Loading…
What Can Computational Models Learn From Human Selective Attention? A Review From an Audiovisual Unimodal and Crossmodal Perspective
Selective attention plays an essential role in information acquisition and utilization from the environment. In the past 50 years, research on selective attention has been a central topic in cognitive science. Compared with unimodal studies, crossmodal studies are more complex but necessary to solve...
Saved in:
Published in: | Frontiers in integrative neuroscience 2020-02, Vol.14, p.10-10 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c556t-580e7786c651af0ba8580007c23373cacd01667c1e0aa99440b2b4869800f23e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c556t-580e7786c651af0ba8580007c23373cacd01667c1e0aa99440b2b4869800f23e3 |
container_end_page | 10 |
container_issue | |
container_start_page | 10 |
container_title | Frontiers in integrative neuroscience |
container_volume | 14 |
creator | Fu, Di Weber, Cornelius Yang, Guochun Kerzel, Matthias Nan, Weizhi Barros, Pablo Wu, Haiyan Liu, Xun Wermter, Stefan |
description | Selective attention plays an essential role in information acquisition and utilization from the environment. In the past 50 years, research on selective attention has been a central topic in cognitive science. Compared with unimodal studies, crossmodal studies are more complex but necessary to solve real-world challenges in both human experiments and computational modeling. Although an increasing number of findings on crossmodal selective attention have shed light on humans' behavioral patterns and neural underpinnings, a much better understanding is still necessary to yield the same benefit for intelligent computational agents. This article reviews studies of selective attention in unimodal visual and auditory and crossmodal audiovisual setups from the multidisciplinary perspectives of psychology and cognitive neuroscience, and evaluates different ways to simulate analogous mechanisms in computational models and robotics. We discuss the gaps between these fields in this interdisciplinary review and provide insights about how to use psychological findings and theories in artificial intelligence from different perspectives. |
doi_str_mv | 10.3389/fnint.2020.00010 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_806f53e9842d4bdb89967ce32cdaf5c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_806f53e9842d4bdb89967ce32cdaf5c1</doaj_id><sourcerecordid>2377681591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-580e7786c651af0ba8580007c23373cacd01667c1e0aa99440b2b4869800f23e3</originalsourceid><addsrcrecordid>eNpdkktv1DAURiMEoqWwZ4UisWEzgx_xIxvQKKK00iAQULG0HOem9SixB9sZxJ4fjjMpVcvK9vXx8esripcYrSmV9dveWZfWBBG0Rghh9Kg4xZyTFcMVe3yvf1I8i3GHECeckafFCSVYVBLz0-LPjxudyka7svHjfko6We_0UH7yHQyx3IIOrjwPfiwvpjFT32AAk-wByk1K4Gb6fbkpv8LBwq8FzNRm6qw_2Dhl05Wzo-9yR7uubIKPcRl-gRD3i-t58aTXQ4QXt-1ZcXX-4Xtzsdp-_njZbLYrwxhPKyYRCCG54QzrHrVa5gpCwhBKBTXadCjfWBgMSOu6rirUkraSvM5UTyjQs-Jy8XZe79Q-2FGH38prq44FH66VDsmaAZREvGcUalmRrmq7VtZ1NgMlptM9Mzi73i2u_dSO0Jn8FkEPD6QPZ5y9Udf-oARiXAqWBW9uBcH_nCAmNdpoYBi0Az9FRagQXGJWz3u9_g_d-Snkb5opzmrCJakyhRbKzI8coL87DEZqjos6xkXNcVHHuOQlr-5f4m7Bv3zQv2mMvOY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365926824</pqid></control><display><type>article</type><title>What Can Computational Models Learn From Human Selective Attention? A Review From an Audiovisual Unimodal and Crossmodal Perspective</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Fu, Di ; Weber, Cornelius ; Yang, Guochun ; Kerzel, Matthias ; Nan, Weizhi ; Barros, Pablo ; Wu, Haiyan ; Liu, Xun ; Wermter, Stefan</creator><creatorcontrib>Fu, Di ; Weber, Cornelius ; Yang, Guochun ; Kerzel, Matthias ; Nan, Weizhi ; Barros, Pablo ; Wu, Haiyan ; Liu, Xun ; Wermter, Stefan</creatorcontrib><description>Selective attention plays an essential role in information acquisition and utilization from the environment. In the past 50 years, research on selective attention has been a central topic in cognitive science. Compared with unimodal studies, crossmodal studies are more complex but necessary to solve real-world challenges in both human experiments and computational modeling. Although an increasing number of findings on crossmodal selective attention have shed light on humans' behavioral patterns and neural underpinnings, a much better understanding is still necessary to yield the same benefit for intelligent computational agents. This article reviews studies of selective attention in unimodal visual and auditory and crossmodal audiovisual setups from the multidisciplinary perspectives of psychology and cognitive neuroscience, and evaluates different ways to simulate analogous mechanisms in computational models and robotics. We discuss the gaps between these fields in this interdisciplinary review and provide insights about how to use psychological findings and theories in artificial intelligence from different perspectives.</description><identifier>ISSN: 1662-5145</identifier><identifier>EISSN: 1662-5145</identifier><identifier>DOI: 10.3389/fnint.2020.00010</identifier><identifier>PMID: 32174816</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Artificial intelligence ; Attention ; auditory attention ; Bias ; Cognitive ability ; computational modeling ; Computational neuroscience ; Computer science ; Control theory ; crossmodal learning ; deep learning ; Information processing ; Interdisciplinary aspects ; Nervous system ; Neuroscience ; selective attention ; Sensory integration ; visual attention ; Visual perception</subject><ispartof>Frontiers in integrative neuroscience, 2020-02, Vol.14, p.10-10</ispartof><rights>Copyright © 2020 Fu, Weber, Yang, Kerzel, Nan, Barros, Wu, Liu and Wermter.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2020 Fu, Weber, Yang, Kerzel, Nan, Barros, Wu, Liu and Wermter. 2020 Fu, Weber, Yang, Kerzel, Nan, Barros, Wu, Liu and Wermter</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-580e7786c651af0ba8580007c23373cacd01667c1e0aa99440b2b4869800f23e3</citedby><cites>FETCH-LOGICAL-c556t-580e7786c651af0ba8580007c23373cacd01667c1e0aa99440b2b4869800f23e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2365926824/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2365926824?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32174816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Di</creatorcontrib><creatorcontrib>Weber, Cornelius</creatorcontrib><creatorcontrib>Yang, Guochun</creatorcontrib><creatorcontrib>Kerzel, Matthias</creatorcontrib><creatorcontrib>Nan, Weizhi</creatorcontrib><creatorcontrib>Barros, Pablo</creatorcontrib><creatorcontrib>Wu, Haiyan</creatorcontrib><creatorcontrib>Liu, Xun</creatorcontrib><creatorcontrib>Wermter, Stefan</creatorcontrib><title>What Can Computational Models Learn From Human Selective Attention? A Review From an Audiovisual Unimodal and Crossmodal Perspective</title><title>Frontiers in integrative neuroscience</title><addtitle>Front Integr Neurosci</addtitle><description>Selective attention plays an essential role in information acquisition and utilization from the environment. In the past 50 years, research on selective attention has been a central topic in cognitive science. Compared with unimodal studies, crossmodal studies are more complex but necessary to solve real-world challenges in both human experiments and computational modeling. Although an increasing number of findings on crossmodal selective attention have shed light on humans' behavioral patterns and neural underpinnings, a much better understanding is still necessary to yield the same benefit for intelligent computational agents. This article reviews studies of selective attention in unimodal visual and auditory and crossmodal audiovisual setups from the multidisciplinary perspectives of psychology and cognitive neuroscience, and evaluates different ways to simulate analogous mechanisms in computational models and robotics. We discuss the gaps between these fields in this interdisciplinary review and provide insights about how to use psychological findings and theories in artificial intelligence from different perspectives.</description><subject>Artificial intelligence</subject><subject>Attention</subject><subject>auditory attention</subject><subject>Bias</subject><subject>Cognitive ability</subject><subject>computational modeling</subject><subject>Computational neuroscience</subject><subject>Computer science</subject><subject>Control theory</subject><subject>crossmodal learning</subject><subject>deep learning</subject><subject>Information processing</subject><subject>Interdisciplinary aspects</subject><subject>Nervous system</subject><subject>Neuroscience</subject><subject>selective attention</subject><subject>Sensory integration</subject><subject>visual attention</subject><subject>Visual perception</subject><issn>1662-5145</issn><issn>1662-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAURiMEoqWwZ4UisWEzgx_xIxvQKKK00iAQULG0HOem9SixB9sZxJ4fjjMpVcvK9vXx8esripcYrSmV9dveWZfWBBG0Rghh9Kg4xZyTFcMVe3yvf1I8i3GHECeckafFCSVYVBLz0-LPjxudyka7svHjfko6We_0UH7yHQyx3IIOrjwPfiwvpjFT32AAk-wByk1K4Gb6fbkpv8LBwq8FzNRm6qw_2Dhl05Wzo-9yR7uubIKPcRl-gRD3i-t58aTXQ4QXt-1ZcXX-4Xtzsdp-_njZbLYrwxhPKyYRCCG54QzrHrVa5gpCwhBKBTXadCjfWBgMSOu6rirUkraSvM5UTyjQs-Jy8XZe79Q-2FGH38prq44FH66VDsmaAZREvGcUalmRrmq7VtZ1NgMlptM9Mzi73i2u_dSO0Jn8FkEPD6QPZ5y9Udf-oARiXAqWBW9uBcH_nCAmNdpoYBi0Az9FRagQXGJWz3u9_g_d-Snkb5opzmrCJakyhRbKzI8coL87DEZqjos6xkXNcVHHuOQlr-5f4m7Bv3zQv2mMvOY</recordid><startdate>20200227</startdate><enddate>20200227</enddate><creator>Fu, Di</creator><creator>Weber, Cornelius</creator><creator>Yang, Guochun</creator><creator>Kerzel, Matthias</creator><creator>Nan, Weizhi</creator><creator>Barros, Pablo</creator><creator>Wu, Haiyan</creator><creator>Liu, Xun</creator><creator>Wermter, Stefan</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200227</creationdate><title>What Can Computational Models Learn From Human Selective Attention? A Review From an Audiovisual Unimodal and Crossmodal Perspective</title><author>Fu, Di ; Weber, Cornelius ; Yang, Guochun ; Kerzel, Matthias ; Nan, Weizhi ; Barros, Pablo ; Wu, Haiyan ; Liu, Xun ; Wermter, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-580e7786c651af0ba8580007c23373cacd01667c1e0aa99440b2b4869800f23e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Attention</topic><topic>auditory attention</topic><topic>Bias</topic><topic>Cognitive ability</topic><topic>computational modeling</topic><topic>Computational neuroscience</topic><topic>Computer science</topic><topic>Control theory</topic><topic>crossmodal learning</topic><topic>deep learning</topic><topic>Information processing</topic><topic>Interdisciplinary aspects</topic><topic>Nervous system</topic><topic>Neuroscience</topic><topic>selective attention</topic><topic>Sensory integration</topic><topic>visual attention</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Di</creatorcontrib><creatorcontrib>Weber, Cornelius</creatorcontrib><creatorcontrib>Yang, Guochun</creatorcontrib><creatorcontrib>Kerzel, Matthias</creatorcontrib><creatorcontrib>Nan, Weizhi</creatorcontrib><creatorcontrib>Barros, Pablo</creatorcontrib><creatorcontrib>Wu, Haiyan</creatorcontrib><creatorcontrib>Liu, Xun</creatorcontrib><creatorcontrib>Wermter, Stefan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in integrative neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Di</au><au>Weber, Cornelius</au><au>Yang, Guochun</au><au>Kerzel, Matthias</au><au>Nan, Weizhi</au><au>Barros, Pablo</au><au>Wu, Haiyan</au><au>Liu, Xun</au><au>Wermter, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Can Computational Models Learn From Human Selective Attention? A Review From an Audiovisual Unimodal and Crossmodal Perspective</atitle><jtitle>Frontiers in integrative neuroscience</jtitle><addtitle>Front Integr Neurosci</addtitle><date>2020-02-27</date><risdate>2020</risdate><volume>14</volume><spage>10</spage><epage>10</epage><pages>10-10</pages><issn>1662-5145</issn><eissn>1662-5145</eissn><abstract>Selective attention plays an essential role in information acquisition and utilization from the environment. In the past 50 years, research on selective attention has been a central topic in cognitive science. Compared with unimodal studies, crossmodal studies are more complex but necessary to solve real-world challenges in both human experiments and computational modeling. Although an increasing number of findings on crossmodal selective attention have shed light on humans' behavioral patterns and neural underpinnings, a much better understanding is still necessary to yield the same benefit for intelligent computational agents. This article reviews studies of selective attention in unimodal visual and auditory and crossmodal audiovisual setups from the multidisciplinary perspectives of psychology and cognitive neuroscience, and evaluates different ways to simulate analogous mechanisms in computational models and robotics. We discuss the gaps between these fields in this interdisciplinary review and provide insights about how to use psychological findings and theories in artificial intelligence from different perspectives.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>32174816</pmid><doi>10.3389/fnint.2020.00010</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5145 |
ispartof | Frontiers in integrative neuroscience, 2020-02, Vol.14, p.10-10 |
issn | 1662-5145 1662-5145 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_806f53e9842d4bdb89967ce32cdaf5c1 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Artificial intelligence Attention auditory attention Bias Cognitive ability computational modeling Computational neuroscience Computer science Control theory crossmodal learning deep learning Information processing Interdisciplinary aspects Nervous system Neuroscience selective attention Sensory integration visual attention Visual perception |
title | What Can Computational Models Learn From Human Selective Attention? A Review From an Audiovisual Unimodal and Crossmodal Perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20Can%20Computational%20Models%20Learn%20From%20Human%20Selective%20Attention?%20A%20Review%20From%20an%20Audiovisual%20Unimodal%20and%20Crossmodal%20Perspective&rft.jtitle=Frontiers%20in%20integrative%20neuroscience&rft.au=Fu,%20Di&rft.date=2020-02-27&rft.volume=14&rft.spage=10&rft.epage=10&rft.pages=10-10&rft.issn=1662-5145&rft.eissn=1662-5145&rft_id=info:doi/10.3389/fnint.2020.00010&rft_dat=%3Cproquest_doaj_%3E2377681591%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-580e7786c651af0ba8580007c23373cacd01667c1e0aa99440b2b4869800f23e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365926824&rft_id=info:pmid/32174816&rfr_iscdi=true |