Loading…

Zn2+–Imidazole Coordination Crosslinks for Elastic Polymeric Binders in High‐Capacity Silicon Electrodes

Recent research has built a consensus that the binder plays a key role in the performance of high‐capacity silicon anodes in lithium‐ion batteries. These anodes necessitate the use of a binder to maintain the electrode integrity during the immense volume change of silicon during cycling. Here, Zn2+–...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2021-05, Vol.8 (9), p.2004290-n/a
Main Authors: Kim, Jaemin, Park, Kiho, Cho, Yunshik, Shin, Hyuksoo, Kim, Sungchan, Char, Kookheon, Choi, Jang Wook
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 9
container_start_page 2004290
container_title Advanced science
container_volume 8
creator Kim, Jaemin
Park, Kiho
Cho, Yunshik
Shin, Hyuksoo
Kim, Sungchan
Char, Kookheon
Choi, Jang Wook
description Recent research has built a consensus that the binder plays a key role in the performance of high‐capacity silicon anodes in lithium‐ion batteries. These anodes necessitate the use of a binder to maintain the electrode integrity during the immense volume change of silicon during cycling. Here, Zn2+–imidazole coordination crosslinks that are formed to carboxymethyl cellulose backbones in situ during electrode fabrication are reported. The recoverable nature of Zn2+–imidazole coordination bonds and the flexibility of the poly(ethylene glycol) chains are jointly responsible for the high elasticity of the binder network. The high elasticity tightens interparticle contacts and sustains the electrode integrity, both of which are beneficial for long‐term cyclability. These electrodes, with their commercial levels of areal capacities, exhibit superior cycle life in full‐cells paired with LiNi0.8Co0.15Al0.05O2 cathodes. The present study underlines the importance of highly reversible metal ion‐ligand coordination chemistries for binders intended for high capacity alloying‐based electrodes. Zn2+–imidazole coordination bonds, crosslinked with carboxymethyl cellulose in situ during electrode fabrication, are introduced as a polymeric binder for high‐capacity silicon anodes. The reversible metal–ligand bonds impart high elasticity to the binder network for keeping the electrode's integrity. The robust cycling performance under commercial levels of areal capacity highlights the usefulness of high elasticity involving metal–ligand bonds.
doi_str_mv 10.1002/advs.202004290
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8076cc0bad424017aeac5f9d7f657a59</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8076cc0bad424017aeac5f9d7f657a59</doaj_id><sourcerecordid>2737375627</sourcerecordid><originalsourceid>FETCH-LOGICAL-d3529-e44952d4f0992a58486cdb06840692c49e4018689e13990a1e686f9becfaa6b93</originalsourceid><addsrcrecordid>eNpdkk1rFEEQhgdRTFhz9TzgRZCN_TX9cRHiuCYLAYWoBy9NTXfPptfe7k33bGQ95ScE_If5Jc66IRipQxVVLw9VxVtVLzE6xgiRt2CvyzFBBCFGFHpSHRKs5JRKxp7-Ux9UR6UsEUK4oYJh-bw6oFQJgXhzWIXvkby5u_k9X3kLv1JwdZtStj7C4FOs25xKCT7-KHWfcj0LUAZv6s8pbFcuj9V7H63LpfaxPvOLy7ub2xbWYPywrS988GZkzIIzQ07WlRfVsx5CcUf3eVJ9_Tj70p5Nzz-dztuT86mlDVFTx5hqiGU9UopAI5nkxnaIS4a4IoYpxxCWXCqHqVIIsOOS96pzpgfgnaKTar7n2gRLvc5-BXmrE3j9t5HyQkMe7whOSyS4MagDy8hIFeDANL2youeNgGbHerdnrTfdylnj4pAhPII-nkR_qRfpeiQrQZkcAa_vATldbVwZ9MoX40KA6NKmaNIQjhkWaid99Z90mTY5jq_SRNAxGj7mScX2qp8-uO3DJhjpnSn0zhT6wRT65MO3C8K4on8ADzOtDg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737375627</pqid></control><display><type>article</type><title>Zn2+–Imidazole Coordination Crosslinks for Elastic Polymeric Binders in High‐Capacity Silicon Electrodes</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Kim, Jaemin ; Park, Kiho ; Cho, Yunshik ; Shin, Hyuksoo ; Kim, Sungchan ; Char, Kookheon ; Choi, Jang Wook</creator><creatorcontrib>Kim, Jaemin ; Park, Kiho ; Cho, Yunshik ; Shin, Hyuksoo ; Kim, Sungchan ; Char, Kookheon ; Choi, Jang Wook</creatorcontrib><description>Recent research has built a consensus that the binder plays a key role in the performance of high‐capacity silicon anodes in lithium‐ion batteries. These anodes necessitate the use of a binder to maintain the electrode integrity during the immense volume change of silicon during cycling. Here, Zn2+–imidazole coordination crosslinks that are formed to carboxymethyl cellulose backbones in situ during electrode fabrication are reported. The recoverable nature of Zn2+–imidazole coordination bonds and the flexibility of the poly(ethylene glycol) chains are jointly responsible for the high elasticity of the binder network. The high elasticity tightens interparticle contacts and sustains the electrode integrity, both of which are beneficial for long‐term cyclability. These electrodes, with their commercial levels of areal capacities, exhibit superior cycle life in full‐cells paired with LiNi0.8Co0.15Al0.05O2 cathodes. The present study underlines the importance of highly reversible metal ion‐ligand coordination chemistries for binders intended for high capacity alloying‐based electrodes. Zn2+–imidazole coordination bonds, crosslinked with carboxymethyl cellulose in situ during electrode fabrication, are introduced as a polymeric binder for high‐capacity silicon anodes. The reversible metal–ligand bonds impart high elasticity to the binder network for keeping the electrode's integrity. The robust cycling performance under commercial levels of areal capacity highlights the usefulness of high elasticity involving metal–ligand bonds.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202004290</identifier><identifier>PMID: 33977065</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>carboxymethyl cellulose ; Design ; dynamic crosslinking ; elastic binders ; Electrodes ; Electrolytes ; in situ crosslinking ; Ligands ; metal–ligand coordination ; NMR ; Nuclear magnetic resonance ; Polymers ; silicon/carbon composite ; supramolecular chemistry ; Viscosity</subject><ispartof>Advanced science, 2021-05, Vol.8 (9), p.2004290-n/a</ispartof><rights>2021 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8783-0901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2737375627/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2737375627?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Kim, Jaemin</creatorcontrib><creatorcontrib>Park, Kiho</creatorcontrib><creatorcontrib>Cho, Yunshik</creatorcontrib><creatorcontrib>Shin, Hyuksoo</creatorcontrib><creatorcontrib>Kim, Sungchan</creatorcontrib><creatorcontrib>Char, Kookheon</creatorcontrib><creatorcontrib>Choi, Jang Wook</creatorcontrib><title>Zn2+–Imidazole Coordination Crosslinks for Elastic Polymeric Binders in High‐Capacity Silicon Electrodes</title><title>Advanced science</title><description>Recent research has built a consensus that the binder plays a key role in the performance of high‐capacity silicon anodes in lithium‐ion batteries. These anodes necessitate the use of a binder to maintain the electrode integrity during the immense volume change of silicon during cycling. Here, Zn2+–imidazole coordination crosslinks that are formed to carboxymethyl cellulose backbones in situ during electrode fabrication are reported. The recoverable nature of Zn2+–imidazole coordination bonds and the flexibility of the poly(ethylene glycol) chains are jointly responsible for the high elasticity of the binder network. The high elasticity tightens interparticle contacts and sustains the electrode integrity, both of which are beneficial for long‐term cyclability. These electrodes, with their commercial levels of areal capacities, exhibit superior cycle life in full‐cells paired with LiNi0.8Co0.15Al0.05O2 cathodes. The present study underlines the importance of highly reversible metal ion‐ligand coordination chemistries for binders intended for high capacity alloying‐based electrodes. Zn2+–imidazole coordination bonds, crosslinked with carboxymethyl cellulose in situ during electrode fabrication, are introduced as a polymeric binder for high‐capacity silicon anodes. The reversible metal–ligand bonds impart high elasticity to the binder network for keeping the electrode's integrity. The robust cycling performance under commercial levels of areal capacity highlights the usefulness of high elasticity involving metal–ligand bonds.</description><subject>carboxymethyl cellulose</subject><subject>Design</subject><subject>dynamic crosslinking</subject><subject>elastic binders</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>in situ crosslinking</subject><subject>Ligands</subject><subject>metal–ligand coordination</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polymers</subject><subject>silicon/carbon composite</subject><subject>supramolecular chemistry</subject><subject>Viscosity</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1rFEEQhgdRTFhz9TzgRZCN_TX9cRHiuCYLAYWoBy9NTXfPptfe7k33bGQ95ScE_If5Jc66IRipQxVVLw9VxVtVLzE6xgiRt2CvyzFBBCFGFHpSHRKs5JRKxp7-Ux9UR6UsEUK4oYJh-bw6oFQJgXhzWIXvkby5u_k9X3kLv1JwdZtStj7C4FOs25xKCT7-KHWfcj0LUAZv6s8pbFcuj9V7H63LpfaxPvOLy7ub2xbWYPywrS988GZkzIIzQ07WlRfVsx5CcUf3eVJ9_Tj70p5Nzz-dztuT86mlDVFTx5hqiGU9UopAI5nkxnaIS4a4IoYpxxCWXCqHqVIIsOOS96pzpgfgnaKTar7n2gRLvc5-BXmrE3j9t5HyQkMe7whOSyS4MagDy8hIFeDANL2youeNgGbHerdnrTfdylnj4pAhPII-nkR_qRfpeiQrQZkcAa_vATldbVwZ9MoX40KA6NKmaNIQjhkWaid99Z90mTY5jq_SRNAxGj7mScX2qp8-uO3DJhjpnSn0zhT6wRT65MO3C8K4on8ADzOtDg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Kim, Jaemin</creator><creator>Park, Kiho</creator><creator>Cho, Yunshik</creator><creator>Shin, Hyuksoo</creator><creator>Kim, Sungchan</creator><creator>Char, Kookheon</creator><creator>Choi, Jang Wook</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8783-0901</orcidid></search><sort><creationdate>20210501</creationdate><title>Zn2+–Imidazole Coordination Crosslinks for Elastic Polymeric Binders in High‐Capacity Silicon Electrodes</title><author>Kim, Jaemin ; Park, Kiho ; Cho, Yunshik ; Shin, Hyuksoo ; Kim, Sungchan ; Char, Kookheon ; Choi, Jang Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d3529-e44952d4f0992a58486cdb06840692c49e4018689e13990a1e686f9becfaa6b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>carboxymethyl cellulose</topic><topic>Design</topic><topic>dynamic crosslinking</topic><topic>elastic binders</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>in situ crosslinking</topic><topic>Ligands</topic><topic>metal–ligand coordination</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polymers</topic><topic>silicon/carbon composite</topic><topic>supramolecular chemistry</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jaemin</creatorcontrib><creatorcontrib>Park, Kiho</creatorcontrib><creatorcontrib>Cho, Yunshik</creatorcontrib><creatorcontrib>Shin, Hyuksoo</creatorcontrib><creatorcontrib>Kim, Sungchan</creatorcontrib><creatorcontrib>Char, Kookheon</creatorcontrib><creatorcontrib>Choi, Jang Wook</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jaemin</au><au>Park, Kiho</au><au>Cho, Yunshik</au><au>Shin, Hyuksoo</au><au>Kim, Sungchan</au><au>Char, Kookheon</au><au>Choi, Jang Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zn2+–Imidazole Coordination Crosslinks for Elastic Polymeric Binders in High‐Capacity Silicon Electrodes</atitle><jtitle>Advanced science</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>8</volume><issue>9</issue><spage>2004290</spage><epage>n/a</epage><pages>2004290-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Recent research has built a consensus that the binder plays a key role in the performance of high‐capacity silicon anodes in lithium‐ion batteries. These anodes necessitate the use of a binder to maintain the electrode integrity during the immense volume change of silicon during cycling. Here, Zn2+–imidazole coordination crosslinks that are formed to carboxymethyl cellulose backbones in situ during electrode fabrication are reported. The recoverable nature of Zn2+–imidazole coordination bonds and the flexibility of the poly(ethylene glycol) chains are jointly responsible for the high elasticity of the binder network. The high elasticity tightens interparticle contacts and sustains the electrode integrity, both of which are beneficial for long‐term cyclability. These electrodes, with their commercial levels of areal capacities, exhibit superior cycle life in full‐cells paired with LiNi0.8Co0.15Al0.05O2 cathodes. The present study underlines the importance of highly reversible metal ion‐ligand coordination chemistries for binders intended for high capacity alloying‐based electrodes. Zn2+–imidazole coordination bonds, crosslinked with carboxymethyl cellulose in situ during electrode fabrication, are introduced as a polymeric binder for high‐capacity silicon anodes. The reversible metal–ligand bonds impart high elasticity to the binder network for keeping the electrode's integrity. The robust cycling performance under commercial levels of areal capacity highlights the usefulness of high elasticity involving metal–ligand bonds.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33977065</pmid><doi>10.1002/advs.202004290</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8783-0901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2021-05, Vol.8 (9), p.2004290-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8076cc0bad424017aeac5f9d7f657a59
source Publicly Available Content Database; Wiley Open Access; PubMed Central
subjects carboxymethyl cellulose
Design
dynamic crosslinking
elastic binders
Electrodes
Electrolytes
in situ crosslinking
Ligands
metal–ligand coordination
NMR
Nuclear magnetic resonance
Polymers
silicon/carbon composite
supramolecular chemistry
Viscosity
title Zn2+–Imidazole Coordination Crosslinks for Elastic Polymeric Binders in High‐Capacity Silicon Electrodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zn2+%E2%80%93Imidazole%20Coordination%20Crosslinks%20for%20Elastic%20Polymeric%20Binders%20in%20High%E2%80%90Capacity%20Silicon%20Electrodes&rft.jtitle=Advanced%20science&rft.au=Kim,%20Jaemin&rft.date=2021-05-01&rft.volume=8&rft.issue=9&rft.spage=2004290&rft.epage=n/a&rft.pages=2004290-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202004290&rft_dat=%3Cproquest_doaj_%3E2737375627%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d3529-e44952d4f0992a58486cdb06840692c49e4018689e13990a1e686f9becfaa6b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2737375627&rft_id=info:pmid/33977065&rfr_iscdi=true