Loading…
Emittance growth due to misalignment in multistage laser-plasma accelerators
Beam degradation is examined in a laser-plasma accelerator stage with a parabolic plasma channel when the laser pulse and/or the electron beam enters the channel off axis. Betatron oscillations in the beam become incoherent, resulting in a net increase of beam emittance through phase mixing. A quant...
Saved in:
Published in: | Physical review. Accelerators and beams 2019-05, Vol.22 (5), p.051302, Article 051302 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Beam degradation is examined in a laser-plasma accelerator stage with a parabolic plasma channel when the laser pulse and/or the electron beam enters the channel off axis. Betatron oscillations in the beam become incoherent, resulting in a net increase of beam emittance through phase mixing. A quantitative model for transverse emittance growth due to misalignment in multistage accelerators, valid in the linear regime, is presented and compared with particle-in-cell simulations. The model is applied to a chain of laser-plasma accelerator stages, and tolerances are derived on the initial energy spread of the electron beam and misalignment in the multistage structure, with repercussions in high-energy physics applications of laser-plasma accelerators. |
---|---|
ISSN: | 2469-9888 2469-9888 |
DOI: | 10.1103/PhysRevAccelBeams.22.051302 |