Loading…
Lagrangians, Gauge Functions, and Lie Groups for Semigroup of Second-Order Differential Equations
A set of linear second-order differential equations is converted into a semigroup, whose algebraic structure is used to generate novel equations. The Lagrangian formalism based on standard, null, and nonstandard Lagrangians is established for all members of the semigroup. For the null Lagrangians, t...
Saved in:
Published in: | Journal of applied mathematics 2020, Vol.2020 (2020), p.1-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-5aece5cdd9918c7ac8c643f1c2bd1e60021a417b73b7844e510a75eaa1a58f903 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-5aece5cdd9918c7ac8c643f1c2bd1e60021a417b73b7844e510a75eaa1a58f903 |
container_end_page | 11 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Journal of applied mathematics |
container_volume | 2020 |
creator | Musielak, Zdzislaw E. Rosario-Franco, M. Davachi, N. |
description | A set of linear second-order differential equations is converted into a semigroup, whose algebraic structure is used to generate novel equations. The Lagrangian formalism based on standard, null, and nonstandard Lagrangians is established for all members of the semigroup. For the null Lagrangians, their corresponding gauge functions are derived. The obtained Lagrangians are either new or generalization of those previously known. The previously developed Lie group approach to derive some equations of the semigroup is also described. It is shown that certain equations of the semigroup cannot be factorized, and therefore, their Lie groups cannot be determined. A possible solution of this problem is proposed, and the relationship between the Lagrangian formalism and the Lie group approach is discussed. |
doi_str_mv | 10.1155/2020/3170130 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_80ac7efc04eb4aa7a6955dd7d55f5d4d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A637027236</galeid><doaj_id>oai_doaj_org_article_80ac7efc04eb4aa7a6955dd7d55f5d4d</doaj_id><sourcerecordid>A637027236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-5aece5cdd9918c7ac8c643f1c2bd1e60021a417b73b7844e510a75eaa1a58f903</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxaOqSKWUW8-VJY5swJPYcXJEfCxIK3GglbhZs_Y49WqxFycR4r_HS1A5Vj6MZ_Sbp9F7RfET-BmAlOcVr_h5DYpDzb8Uh9C0quRcVF_zH4CXSqrHb8X3YdjwTMoODgtcYZ8w9B7DsGBLnHpiN1Mwo4_7AQbLVp7YMsVpNzAXE3ugJ9_vWxZdbkwMtrxPlhK78s5RojB63LLr5wnfRX4UBw63Ax1_1KPiz83178vbcnW_vLu8WJVGNHIsJZIhaaztOmiNQtOaRtQOTLW2QE0-GFCAWqt6rVohSAJHJQkRULau4_VRcTfr2ogbvUv-CdOrjuj1-yCmXmMavdmSbjkaRc5wQWuBqLDppLRWWSmdtMJmrZNZa5fi80TDqDdxSiGfrytR8Wxd14pMnc1Uj1nUBxfHhCY_my3KvpDzeX7R1IpXqqqbvLCYF0yKw5DI_TsTuN4nqPcJ6o8EM3464399sPji_0f_mmnKDDn8pEEJyVX9Bh3Go_k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420059984</pqid></control><display><type>article</type><title>Lagrangians, Gauge Functions, and Lie Groups for Semigroup of Second-Order Differential Equations</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Musielak, Zdzislaw E. ; Rosario-Franco, M. ; Davachi, N.</creator><contributor>Torrisi, Mariano ; Mariano Torrisi</contributor><creatorcontrib>Musielak, Zdzislaw E. ; Rosario-Franco, M. ; Davachi, N. ; Torrisi, Mariano ; Mariano Torrisi</creatorcontrib><description>A set of linear second-order differential equations is converted into a semigroup, whose algebraic structure is used to generate novel equations. The Lagrangian formalism based on standard, null, and nonstandard Lagrangians is established for all members of the semigroup. For the null Lagrangians, their corresponding gauge functions are derived. The obtained Lagrangians are either new or generalization of those previously known. The previously developed Lie group approach to derive some equations of the semigroup is also described. It is shown that certain equations of the semigroup cannot be factorized, and therefore, their Lie groups cannot be determined. A possible solution of this problem is proposed, and the relationship between the Lagrangian formalism and the Lie group approach is discussed.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2020/3170130</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algebra ; Differential equations ; Formalism ; Lie groups ; Mathematical analysis ; Physics</subject><ispartof>Journal of applied mathematics, 2020, Vol.2020 (2020), p.1-11</ispartof><rights>Copyright © 2020 Z. E. Musielak et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Z. E. Musielak et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-5aece5cdd9918c7ac8c643f1c2bd1e60021a417b73b7844e510a75eaa1a58f903</citedby><cites>FETCH-LOGICAL-c465t-5aece5cdd9918c7ac8c643f1c2bd1e60021a417b73b7844e510a75eaa1a58f903</cites><orcidid>0000-0003-1975-9298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2420059984/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2420059984?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Torrisi, Mariano</contributor><contributor>Mariano Torrisi</contributor><creatorcontrib>Musielak, Zdzislaw E.</creatorcontrib><creatorcontrib>Rosario-Franco, M.</creatorcontrib><creatorcontrib>Davachi, N.</creatorcontrib><title>Lagrangians, Gauge Functions, and Lie Groups for Semigroup of Second-Order Differential Equations</title><title>Journal of applied mathematics</title><description>A set of linear second-order differential equations is converted into a semigroup, whose algebraic structure is used to generate novel equations. The Lagrangian formalism based on standard, null, and nonstandard Lagrangians is established for all members of the semigroup. For the null Lagrangians, their corresponding gauge functions are derived. The obtained Lagrangians are either new or generalization of those previously known. The previously developed Lie group approach to derive some equations of the semigroup is also described. It is shown that certain equations of the semigroup cannot be factorized, and therefore, their Lie groups cannot be determined. A possible solution of this problem is proposed, and the relationship between the Lagrangian formalism and the Lie group approach is discussed.</description><subject>Algebra</subject><subject>Differential equations</subject><subject>Formalism</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Physics</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1P3DAQxaOqSKWUW8-VJY5swJPYcXJEfCxIK3GglbhZs_Y49WqxFycR4r_HS1A5Vj6MZ_Sbp9F7RfET-BmAlOcVr_h5DYpDzb8Uh9C0quRcVF_zH4CXSqrHb8X3YdjwTMoODgtcYZ8w9B7DsGBLnHpiN1Mwo4_7AQbLVp7YMsVpNzAXE3ugJ9_vWxZdbkwMtrxPlhK78s5RojB63LLr5wnfRX4UBw63Ax1_1KPiz83178vbcnW_vLu8WJVGNHIsJZIhaaztOmiNQtOaRtQOTLW2QE0-GFCAWqt6rVohSAJHJQkRULau4_VRcTfr2ogbvUv-CdOrjuj1-yCmXmMavdmSbjkaRc5wQWuBqLDppLRWWSmdtMJmrZNZa5fi80TDqDdxSiGfrytR8Wxd14pMnc1Uj1nUBxfHhCY_my3KvpDzeX7R1IpXqqqbvLCYF0yKw5DI_TsTuN4nqPcJ6o8EM3464399sPji_0f_mmnKDDn8pEEJyVX9Bh3Go_k</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Musielak, Zdzislaw E.</creator><creator>Rosario-Franco, M.</creator><creator>Davachi, N.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1975-9298</orcidid></search><sort><creationdate>2020</creationdate><title>Lagrangians, Gauge Functions, and Lie Groups for Semigroup of Second-Order Differential Equations</title><author>Musielak, Zdzislaw E. ; Rosario-Franco, M. ; Davachi, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-5aece5cdd9918c7ac8c643f1c2bd1e60021a417b73b7844e510a75eaa1a58f903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Differential equations</topic><topic>Formalism</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Musielak, Zdzislaw E.</creatorcontrib><creatorcontrib>Rosario-Franco, M.</creatorcontrib><creatorcontrib>Davachi, N.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Musielak, Zdzislaw E.</au><au>Rosario-Franco, M.</au><au>Davachi, N.</au><au>Torrisi, Mariano</au><au>Mariano Torrisi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lagrangians, Gauge Functions, and Lie Groups for Semigroup of Second-Order Differential Equations</atitle><jtitle>Journal of applied mathematics</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>A set of linear second-order differential equations is converted into a semigroup, whose algebraic structure is used to generate novel equations. The Lagrangian formalism based on standard, null, and nonstandard Lagrangians is established for all members of the semigroup. For the null Lagrangians, their corresponding gauge functions are derived. The obtained Lagrangians are either new or generalization of those previously known. The previously developed Lie group approach to derive some equations of the semigroup is also described. It is shown that certain equations of the semigroup cannot be factorized, and therefore, their Lie groups cannot be determined. A possible solution of this problem is proposed, and the relationship between the Lagrangian formalism and the Lie group approach is discussed.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3170130</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1975-9298</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-757X |
ispartof | Journal of applied mathematics, 2020, Vol.2020 (2020), p.1-11 |
issn | 1110-757X 1687-0042 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_80ac7efc04eb4aa7a6955dd7d55f5d4d |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley-Blackwell Open Access Titles(OpenAccess) |
subjects | Algebra Differential equations Formalism Lie groups Mathematical analysis Physics |
title | Lagrangians, Gauge Functions, and Lie Groups for Semigroup of Second-Order Differential Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lagrangians,%20Gauge%20Functions,%20and%20Lie%20Groups%20for%20Semigroup%20of%20Second-Order%20Differential%20Equations&rft.jtitle=Journal%20of%20applied%20mathematics&rft.au=Musielak,%20Zdzislaw%20E.&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2020/3170130&rft_dat=%3Cgale_doaj_%3EA637027236%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-5aece5cdd9918c7ac8c643f1c2bd1e60021a417b73b7844e510a75eaa1a58f903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2420059984&rft_id=info:pmid/&rft_galeid=A637027236&rfr_iscdi=true |