Loading…

Deep Sequence Learning for Prediction of Daily NO2 Concentration in Coastal Cities of Northern China

Nitrogen dioxide (NO2) is an important precursor of atmospheric aerosol. Forecasting urban NO2 concentration is vital for effective control of air pollution. This paper proposes a hybrid deep learning model for predicting daily average NO2 concentrations on the next day, based on atmospheric polluta...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2023-03, Vol.14 (3), p.467
Main Authors: Jia, Xingbin, Gong, Xiang, Liu, Xiaohuan, Zhao, Xianzhi, Meng, He, Dong, Quanyue, Liu, Guangliang, Gao, Huiwang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3
cites cdi_FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3
container_end_page
container_issue 3
container_start_page 467
container_title Atmosphere
container_volume 14
creator Jia, Xingbin
Gong, Xiang
Liu, Xiaohuan
Zhao, Xianzhi
Meng, He
Dong, Quanyue
Liu, Guangliang
Gao, Huiwang
description Nitrogen dioxide (NO2) is an important precursor of atmospheric aerosol. Forecasting urban NO2 concentration is vital for effective control of air pollution. This paper proposes a hybrid deep learning model for predicting daily average NO2 concentrations on the next day, based on atmospheric pollutants, meteorological data, and historical data during 2014 to 2020 in five coastal cities of Shandong peninsula, northern China. A random Forest (RF) algorithm was used to select input variables to reduce data dimensionality trained by the sequence to sequence (Seq2Seq) the model and describe how the Seq2Seq model understands each predictor variable. The hybrid model combining an RF with Seq2Seq network (RF-S2S) was evaluated and achieved a Pearson’s correlation coefficient of 0.93, a Nash–Sutcliffe coefficient (NS) of 0.79, a Root Mean Square Error (RMSE) of 5.85 µg/m3, a Mean Absolute Error (MAE) of 4.50 µg/m3, and a Mean Absolute Percentage Error (MAPE) of 20.86%. Feature selection by an RF model improves the performance of the Seq2Seq model, reducing errors by 19.7% (RMSE), 20.3% (MAE), and 29.3% (MAPE), respectively. Carbon monoxide (CO) and PM10 are two common, important features influencing the prediction of NO2 concentrations in coastal areas of northern China. The results of RF-S2S models can capture general trends and disruptions more accurately than can long-short term memory (LSTM) models with and without feature selection. The decreasing tendency of NO2 from 2014 to 2020 illustrated by the empirical mode decomposition (EMD) method is one important obstacle to improving the RF-S2S prediction accuracy. An EMD-based RF-S2S model could help to perform the short-term forecast of NO2 concentrations efficiently.
doi_str_mv 10.3390/atmos14030467
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_80cf09fecd244d25ad873fd6b1697c2d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_80cf09fecd244d25ad873fd6b1697c2d</doaj_id><sourcerecordid>2791570409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3</originalsourceid><addsrcrecordid>eNpVUU1LAzEQXUTBoj16D3hezSbpZnOU1o9CaQX1HGaTiabUTU3Sg__e1IroXGZ47_FmmFdVFw294lzRa8jvITWCcipaeVSNGJW8FoLz4z_zaTVOaU1LCcUZF6PKzhC35Ak_djgYJAuEOPjhlbgQyWNE6032YSDBkRn4zSdZrhiZhiIdcoRvyg8FgJRhQ6Y-e0x78TLE_IaxUG9-gPPqxMEm4finn1Uvd7fP04d6sbqfT28WteGS5rppqTG066CVnRN916DruYCJYq1EXlBqe5zIHlojFMjOSIWA1qFj1jS94WfV_OBrA6z1Nvp3iJ86gNffQIivGmL2ZoO6o8ZR5dBYJoRlE7Cd5M62fdMqaZgtXpcHr20M5Tkp63XYxaGcr5lUzURSQVVR1QeViSGliO53a0P1Phf9Lxf-BUCJgVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791570409</pqid></control><display><type>article</type><title>Deep Sequence Learning for Prediction of Daily NO2 Concentration in Coastal Cities of Northern China</title><source>Publicly Available Content Database</source><creator>Jia, Xingbin ; Gong, Xiang ; Liu, Xiaohuan ; Zhao, Xianzhi ; Meng, He ; Dong, Quanyue ; Liu, Guangliang ; Gao, Huiwang</creator><creatorcontrib>Jia, Xingbin ; Gong, Xiang ; Liu, Xiaohuan ; Zhao, Xianzhi ; Meng, He ; Dong, Quanyue ; Liu, Guangliang ; Gao, Huiwang</creatorcontrib><description>Nitrogen dioxide (NO2) is an important precursor of atmospheric aerosol. Forecasting urban NO2 concentration is vital for effective control of air pollution. This paper proposes a hybrid deep learning model for predicting daily average NO2 concentrations on the next day, based on atmospheric pollutants, meteorological data, and historical data during 2014 to 2020 in five coastal cities of Shandong peninsula, northern China. A random Forest (RF) algorithm was used to select input variables to reduce data dimensionality trained by the sequence to sequence (Seq2Seq) the model and describe how the Seq2Seq model understands each predictor variable. The hybrid model combining an RF with Seq2Seq network (RF-S2S) was evaluated and achieved a Pearson’s correlation coefficient of 0.93, a Nash–Sutcliffe coefficient (NS) of 0.79, a Root Mean Square Error (RMSE) of 5.85 µg/m3, a Mean Absolute Error (MAE) of 4.50 µg/m3, and a Mean Absolute Percentage Error (MAPE) of 20.86%. Feature selection by an RF model improves the performance of the Seq2Seq model, reducing errors by 19.7% (RMSE), 20.3% (MAE), and 29.3% (MAPE), respectively. Carbon monoxide (CO) and PM10 are two common, important features influencing the prediction of NO2 concentrations in coastal areas of northern China. The results of RF-S2S models can capture general trends and disruptions more accurately than can long-short term memory (LSTM) models with and without feature selection. The decreasing tendency of NO2 from 2014 to 2020 illustrated by the empirical mode decomposition (EMD) method is one important obstacle to improving the RF-S2S prediction accuracy. An EMD-based RF-S2S model could help to perform the short-term forecast of NO2 concentrations efficiently.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos14030467</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Aerosol concentrations ; Air pollution ; Air pollution control ; Algorithms ; Atmospheric models ; Carbon monoxide ; Coastal zone ; Correlation coefficient ; Correlation coefficients ; Deep learning ; Environmental monitoring ; Feature selection ; History ; Humidity ; Long short-term memory ; Mathematical models ; Meteorological data ; Modelling ; Neural networks ; Nitrogen dioxide ; NO2 ; Outdoor air quality ; Particulate matter ; Pollutants ; prediction ; Predictions ; Rain ; random forest ; Root-mean-square errors ; sequence to sequence ; Sequencing ; Variables ; Wavelet transforms ; Winter</subject><ispartof>Atmosphere, 2023-03, Vol.14 (3), p.467</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3</citedby><cites>FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3</cites><orcidid>0000-0003-2026-0355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791570409/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791570409?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Jia, Xingbin</creatorcontrib><creatorcontrib>Gong, Xiang</creatorcontrib><creatorcontrib>Liu, Xiaohuan</creatorcontrib><creatorcontrib>Zhao, Xianzhi</creatorcontrib><creatorcontrib>Meng, He</creatorcontrib><creatorcontrib>Dong, Quanyue</creatorcontrib><creatorcontrib>Liu, Guangliang</creatorcontrib><creatorcontrib>Gao, Huiwang</creatorcontrib><title>Deep Sequence Learning for Prediction of Daily NO2 Concentration in Coastal Cities of Northern China</title><title>Atmosphere</title><description>Nitrogen dioxide (NO2) is an important precursor of atmospheric aerosol. Forecasting urban NO2 concentration is vital for effective control of air pollution. This paper proposes a hybrid deep learning model for predicting daily average NO2 concentrations on the next day, based on atmospheric pollutants, meteorological data, and historical data during 2014 to 2020 in five coastal cities of Shandong peninsula, northern China. A random Forest (RF) algorithm was used to select input variables to reduce data dimensionality trained by the sequence to sequence (Seq2Seq) the model and describe how the Seq2Seq model understands each predictor variable. The hybrid model combining an RF with Seq2Seq network (RF-S2S) was evaluated and achieved a Pearson’s correlation coefficient of 0.93, a Nash–Sutcliffe coefficient (NS) of 0.79, a Root Mean Square Error (RMSE) of 5.85 µg/m3, a Mean Absolute Error (MAE) of 4.50 µg/m3, and a Mean Absolute Percentage Error (MAPE) of 20.86%. Feature selection by an RF model improves the performance of the Seq2Seq model, reducing errors by 19.7% (RMSE), 20.3% (MAE), and 29.3% (MAPE), respectively. Carbon monoxide (CO) and PM10 are two common, important features influencing the prediction of NO2 concentrations in coastal areas of northern China. The results of RF-S2S models can capture general trends and disruptions more accurately than can long-short term memory (LSTM) models with and without feature selection. The decreasing tendency of NO2 from 2014 to 2020 illustrated by the empirical mode decomposition (EMD) method is one important obstacle to improving the RF-S2S prediction accuracy. An EMD-based RF-S2S model could help to perform the short-term forecast of NO2 concentrations efficiently.</description><subject>Accuracy</subject><subject>Aerosol concentrations</subject><subject>Air pollution</subject><subject>Air pollution control</subject><subject>Algorithms</subject><subject>Atmospheric models</subject><subject>Carbon monoxide</subject><subject>Coastal zone</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Deep learning</subject><subject>Environmental monitoring</subject><subject>Feature selection</subject><subject>History</subject><subject>Humidity</subject><subject>Long short-term memory</subject><subject>Mathematical models</subject><subject>Meteorological data</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Nitrogen dioxide</subject><subject>NO2</subject><subject>Outdoor air quality</subject><subject>Particulate matter</subject><subject>Pollutants</subject><subject>prediction</subject><subject>Predictions</subject><subject>Rain</subject><subject>random forest</subject><subject>Root-mean-square errors</subject><subject>sequence to sequence</subject><subject>Sequencing</subject><subject>Variables</subject><subject>Wavelet transforms</subject><subject>Winter</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1LAzEQXUTBoj16D3hezSbpZnOU1o9CaQX1HGaTiabUTU3Sg__e1IroXGZ47_FmmFdVFw294lzRa8jvITWCcipaeVSNGJW8FoLz4z_zaTVOaU1LCcUZF6PKzhC35Ak_djgYJAuEOPjhlbgQyWNE6032YSDBkRn4zSdZrhiZhiIdcoRvyg8FgJRhQ6Y-e0x78TLE_IaxUG9-gPPqxMEm4finn1Uvd7fP04d6sbqfT28WteGS5rppqTG066CVnRN916DruYCJYq1EXlBqe5zIHlojFMjOSIWA1qFj1jS94WfV_OBrA6z1Nvp3iJ86gNffQIivGmL2ZoO6o8ZR5dBYJoRlE7Cd5M62fdMqaZgtXpcHr20M5Tkp63XYxaGcr5lUzURSQVVR1QeViSGliO53a0P1Phf9Lxf-BUCJgVA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Jia, Xingbin</creator><creator>Gong, Xiang</creator><creator>Liu, Xiaohuan</creator><creator>Zhao, Xianzhi</creator><creator>Meng, He</creator><creator>Dong, Quanyue</creator><creator>Liu, Guangliang</creator><creator>Gao, Huiwang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2026-0355</orcidid></search><sort><creationdate>20230301</creationdate><title>Deep Sequence Learning for Prediction of Daily NO2 Concentration in Coastal Cities of Northern China</title><author>Jia, Xingbin ; Gong, Xiang ; Liu, Xiaohuan ; Zhao, Xianzhi ; Meng, He ; Dong, Quanyue ; Liu, Guangliang ; Gao, Huiwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Aerosol concentrations</topic><topic>Air pollution</topic><topic>Air pollution control</topic><topic>Algorithms</topic><topic>Atmospheric models</topic><topic>Carbon monoxide</topic><topic>Coastal zone</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Deep learning</topic><topic>Environmental monitoring</topic><topic>Feature selection</topic><topic>History</topic><topic>Humidity</topic><topic>Long short-term memory</topic><topic>Mathematical models</topic><topic>Meteorological data</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Nitrogen dioxide</topic><topic>NO2</topic><topic>Outdoor air quality</topic><topic>Particulate matter</topic><topic>Pollutants</topic><topic>prediction</topic><topic>Predictions</topic><topic>Rain</topic><topic>random forest</topic><topic>Root-mean-square errors</topic><topic>sequence to sequence</topic><topic>Sequencing</topic><topic>Variables</topic><topic>Wavelet transforms</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Xingbin</creatorcontrib><creatorcontrib>Gong, Xiang</creatorcontrib><creatorcontrib>Liu, Xiaohuan</creatorcontrib><creatorcontrib>Zhao, Xianzhi</creatorcontrib><creatorcontrib>Meng, He</creatorcontrib><creatorcontrib>Dong, Quanyue</creatorcontrib><creatorcontrib>Liu, Guangliang</creatorcontrib><creatorcontrib>Gao, Huiwang</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Xingbin</au><au>Gong, Xiang</au><au>Liu, Xiaohuan</au><au>Zhao, Xianzhi</au><au>Meng, He</au><au>Dong, Quanyue</au><au>Liu, Guangliang</au><au>Gao, Huiwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Sequence Learning for Prediction of Daily NO2 Concentration in Coastal Cities of Northern China</atitle><jtitle>Atmosphere</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>14</volume><issue>3</issue><spage>467</spage><pages>467-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>Nitrogen dioxide (NO2) is an important precursor of atmospheric aerosol. Forecasting urban NO2 concentration is vital for effective control of air pollution. This paper proposes a hybrid deep learning model for predicting daily average NO2 concentrations on the next day, based on atmospheric pollutants, meteorological data, and historical data during 2014 to 2020 in five coastal cities of Shandong peninsula, northern China. A random Forest (RF) algorithm was used to select input variables to reduce data dimensionality trained by the sequence to sequence (Seq2Seq) the model and describe how the Seq2Seq model understands each predictor variable. The hybrid model combining an RF with Seq2Seq network (RF-S2S) was evaluated and achieved a Pearson’s correlation coefficient of 0.93, a Nash–Sutcliffe coefficient (NS) of 0.79, a Root Mean Square Error (RMSE) of 5.85 µg/m3, a Mean Absolute Error (MAE) of 4.50 µg/m3, and a Mean Absolute Percentage Error (MAPE) of 20.86%. Feature selection by an RF model improves the performance of the Seq2Seq model, reducing errors by 19.7% (RMSE), 20.3% (MAE), and 29.3% (MAPE), respectively. Carbon monoxide (CO) and PM10 are two common, important features influencing the prediction of NO2 concentrations in coastal areas of northern China. The results of RF-S2S models can capture general trends and disruptions more accurately than can long-short term memory (LSTM) models with and without feature selection. The decreasing tendency of NO2 from 2014 to 2020 illustrated by the empirical mode decomposition (EMD) method is one important obstacle to improving the RF-S2S prediction accuracy. An EMD-based RF-S2S model could help to perform the short-term forecast of NO2 concentrations efficiently.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos14030467</doi><orcidid>https://orcid.org/0000-0003-2026-0355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4433
ispartof Atmosphere, 2023-03, Vol.14 (3), p.467
issn 2073-4433
2073-4433
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_80cf09fecd244d25ad873fd6b1697c2d
source Publicly Available Content Database
subjects Accuracy
Aerosol concentrations
Air pollution
Air pollution control
Algorithms
Atmospheric models
Carbon monoxide
Coastal zone
Correlation coefficient
Correlation coefficients
Deep learning
Environmental monitoring
Feature selection
History
Humidity
Long short-term memory
Mathematical models
Meteorological data
Modelling
Neural networks
Nitrogen dioxide
NO2
Outdoor air quality
Particulate matter
Pollutants
prediction
Predictions
Rain
random forest
Root-mean-square errors
sequence to sequence
Sequencing
Variables
Wavelet transforms
Winter
title Deep Sequence Learning for Prediction of Daily NO2 Concentration in Coastal Cities of Northern China
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Sequence%20Learning%20for%20Prediction%20of%20Daily%20NO2%20Concentration%20in%20Coastal%20Cities%20of%20Northern%20China&rft.jtitle=Atmosphere&rft.au=Jia,%20Xingbin&rft.date=2023-03-01&rft.volume=14&rft.issue=3&rft.spage=467&rft.pages=467-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos14030467&rft_dat=%3Cproquest_doaj_%3E2791570409%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791570409&rft_id=info:pmid/&rfr_iscdi=true