Loading…
Deep Sequence Learning for Prediction of Daily NO2 Concentration in Coastal Cities of Northern China
Nitrogen dioxide (NO2) is an important precursor of atmospheric aerosol. Forecasting urban NO2 concentration is vital for effective control of air pollution. This paper proposes a hybrid deep learning model for predicting daily average NO2 concentrations on the next day, based on atmospheric polluta...
Saved in:
Published in: | Atmosphere 2023-03, Vol.14 (3), p.467 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3 |
container_end_page | |
container_issue | 3 |
container_start_page | 467 |
container_title | Atmosphere |
container_volume | 14 |
creator | Jia, Xingbin Gong, Xiang Liu, Xiaohuan Zhao, Xianzhi Meng, He Dong, Quanyue Liu, Guangliang Gao, Huiwang |
description | Nitrogen dioxide (NO2) is an important precursor of atmospheric aerosol. Forecasting urban NO2 concentration is vital for effective control of air pollution. This paper proposes a hybrid deep learning model for predicting daily average NO2 concentrations on the next day, based on atmospheric pollutants, meteorological data, and historical data during 2014 to 2020 in five coastal cities of Shandong peninsula, northern China. A random Forest (RF) algorithm was used to select input variables to reduce data dimensionality trained by the sequence to sequence (Seq2Seq) the model and describe how the Seq2Seq model understands each predictor variable. The hybrid model combining an RF with Seq2Seq network (RF-S2S) was evaluated and achieved a Pearson’s correlation coefficient of 0.93, a Nash–Sutcliffe coefficient (NS) of 0.79, a Root Mean Square Error (RMSE) of 5.85 µg/m3, a Mean Absolute Error (MAE) of 4.50 µg/m3, and a Mean Absolute Percentage Error (MAPE) of 20.86%. Feature selection by an RF model improves the performance of the Seq2Seq model, reducing errors by 19.7% (RMSE), 20.3% (MAE), and 29.3% (MAPE), respectively. Carbon monoxide (CO) and PM10 are two common, important features influencing the prediction of NO2 concentrations in coastal areas of northern China. The results of RF-S2S models can capture general trends and disruptions more accurately than can long-short term memory (LSTM) models with and without feature selection. The decreasing tendency of NO2 from 2014 to 2020 illustrated by the empirical mode decomposition (EMD) method is one important obstacle to improving the RF-S2S prediction accuracy. An EMD-based RF-S2S model could help to perform the short-term forecast of NO2 concentrations efficiently. |
doi_str_mv | 10.3390/atmos14030467 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_80cf09fecd244d25ad873fd6b1697c2d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_80cf09fecd244d25ad873fd6b1697c2d</doaj_id><sourcerecordid>2791570409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3</originalsourceid><addsrcrecordid>eNpVUU1LAzEQXUTBoj16D3hezSbpZnOU1o9CaQX1HGaTiabUTU3Sg__e1IroXGZ47_FmmFdVFw294lzRa8jvITWCcipaeVSNGJW8FoLz4z_zaTVOaU1LCcUZF6PKzhC35Ak_djgYJAuEOPjhlbgQyWNE6032YSDBkRn4zSdZrhiZhiIdcoRvyg8FgJRhQ6Y-e0x78TLE_IaxUG9-gPPqxMEm4finn1Uvd7fP04d6sbqfT28WteGS5rppqTG066CVnRN916DruYCJYq1EXlBqe5zIHlojFMjOSIWA1qFj1jS94WfV_OBrA6z1Nvp3iJ86gNffQIivGmL2ZoO6o8ZR5dBYJoRlE7Cd5M62fdMqaZgtXpcHr20M5Tkp63XYxaGcr5lUzURSQVVR1QeViSGliO53a0P1Phf9Lxf-BUCJgVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791570409</pqid></control><display><type>article</type><title>Deep Sequence Learning for Prediction of Daily NO2 Concentration in Coastal Cities of Northern China</title><source>Publicly Available Content Database</source><creator>Jia, Xingbin ; Gong, Xiang ; Liu, Xiaohuan ; Zhao, Xianzhi ; Meng, He ; Dong, Quanyue ; Liu, Guangliang ; Gao, Huiwang</creator><creatorcontrib>Jia, Xingbin ; Gong, Xiang ; Liu, Xiaohuan ; Zhao, Xianzhi ; Meng, He ; Dong, Quanyue ; Liu, Guangliang ; Gao, Huiwang</creatorcontrib><description>Nitrogen dioxide (NO2) is an important precursor of atmospheric aerosol. Forecasting urban NO2 concentration is vital for effective control of air pollution. This paper proposes a hybrid deep learning model for predicting daily average NO2 concentrations on the next day, based on atmospheric pollutants, meteorological data, and historical data during 2014 to 2020 in five coastal cities of Shandong peninsula, northern China. A random Forest (RF) algorithm was used to select input variables to reduce data dimensionality trained by the sequence to sequence (Seq2Seq) the model and describe how the Seq2Seq model understands each predictor variable. The hybrid model combining an RF with Seq2Seq network (RF-S2S) was evaluated and achieved a Pearson’s correlation coefficient of 0.93, a Nash–Sutcliffe coefficient (NS) of 0.79, a Root Mean Square Error (RMSE) of 5.85 µg/m3, a Mean Absolute Error (MAE) of 4.50 µg/m3, and a Mean Absolute Percentage Error (MAPE) of 20.86%. Feature selection by an RF model improves the performance of the Seq2Seq model, reducing errors by 19.7% (RMSE), 20.3% (MAE), and 29.3% (MAPE), respectively. Carbon monoxide (CO) and PM10 are two common, important features influencing the prediction of NO2 concentrations in coastal areas of northern China. The results of RF-S2S models can capture general trends and disruptions more accurately than can long-short term memory (LSTM) models with and without feature selection. The decreasing tendency of NO2 from 2014 to 2020 illustrated by the empirical mode decomposition (EMD) method is one important obstacle to improving the RF-S2S prediction accuracy. An EMD-based RF-S2S model could help to perform the short-term forecast of NO2 concentrations efficiently.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos14030467</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Aerosol concentrations ; Air pollution ; Air pollution control ; Algorithms ; Atmospheric models ; Carbon monoxide ; Coastal zone ; Correlation coefficient ; Correlation coefficients ; Deep learning ; Environmental monitoring ; Feature selection ; History ; Humidity ; Long short-term memory ; Mathematical models ; Meteorological data ; Modelling ; Neural networks ; Nitrogen dioxide ; NO2 ; Outdoor air quality ; Particulate matter ; Pollutants ; prediction ; Predictions ; Rain ; random forest ; Root-mean-square errors ; sequence to sequence ; Sequencing ; Variables ; Wavelet transforms ; Winter</subject><ispartof>Atmosphere, 2023-03, Vol.14 (3), p.467</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3</citedby><cites>FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3</cites><orcidid>0000-0003-2026-0355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791570409/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791570409?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Jia, Xingbin</creatorcontrib><creatorcontrib>Gong, Xiang</creatorcontrib><creatorcontrib>Liu, Xiaohuan</creatorcontrib><creatorcontrib>Zhao, Xianzhi</creatorcontrib><creatorcontrib>Meng, He</creatorcontrib><creatorcontrib>Dong, Quanyue</creatorcontrib><creatorcontrib>Liu, Guangliang</creatorcontrib><creatorcontrib>Gao, Huiwang</creatorcontrib><title>Deep Sequence Learning for Prediction of Daily NO2 Concentration in Coastal Cities of Northern China</title><title>Atmosphere</title><description>Nitrogen dioxide (NO2) is an important precursor of atmospheric aerosol. Forecasting urban NO2 concentration is vital for effective control of air pollution. This paper proposes a hybrid deep learning model for predicting daily average NO2 concentrations on the next day, based on atmospheric pollutants, meteorological data, and historical data during 2014 to 2020 in five coastal cities of Shandong peninsula, northern China. A random Forest (RF) algorithm was used to select input variables to reduce data dimensionality trained by the sequence to sequence (Seq2Seq) the model and describe how the Seq2Seq model understands each predictor variable. The hybrid model combining an RF with Seq2Seq network (RF-S2S) was evaluated and achieved a Pearson’s correlation coefficient of 0.93, a Nash–Sutcliffe coefficient (NS) of 0.79, a Root Mean Square Error (RMSE) of 5.85 µg/m3, a Mean Absolute Error (MAE) of 4.50 µg/m3, and a Mean Absolute Percentage Error (MAPE) of 20.86%. Feature selection by an RF model improves the performance of the Seq2Seq model, reducing errors by 19.7% (RMSE), 20.3% (MAE), and 29.3% (MAPE), respectively. Carbon monoxide (CO) and PM10 are two common, important features influencing the prediction of NO2 concentrations in coastal areas of northern China. The results of RF-S2S models can capture general trends and disruptions more accurately than can long-short term memory (LSTM) models with and without feature selection. The decreasing tendency of NO2 from 2014 to 2020 illustrated by the empirical mode decomposition (EMD) method is one important obstacle to improving the RF-S2S prediction accuracy. An EMD-based RF-S2S model could help to perform the short-term forecast of NO2 concentrations efficiently.</description><subject>Accuracy</subject><subject>Aerosol concentrations</subject><subject>Air pollution</subject><subject>Air pollution control</subject><subject>Algorithms</subject><subject>Atmospheric models</subject><subject>Carbon monoxide</subject><subject>Coastal zone</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Deep learning</subject><subject>Environmental monitoring</subject><subject>Feature selection</subject><subject>History</subject><subject>Humidity</subject><subject>Long short-term memory</subject><subject>Mathematical models</subject><subject>Meteorological data</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Nitrogen dioxide</subject><subject>NO2</subject><subject>Outdoor air quality</subject><subject>Particulate matter</subject><subject>Pollutants</subject><subject>prediction</subject><subject>Predictions</subject><subject>Rain</subject><subject>random forest</subject><subject>Root-mean-square errors</subject><subject>sequence to sequence</subject><subject>Sequencing</subject><subject>Variables</subject><subject>Wavelet transforms</subject><subject>Winter</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1LAzEQXUTBoj16D3hezSbpZnOU1o9CaQX1HGaTiabUTU3Sg__e1IroXGZ47_FmmFdVFw294lzRa8jvITWCcipaeVSNGJW8FoLz4z_zaTVOaU1LCcUZF6PKzhC35Ak_djgYJAuEOPjhlbgQyWNE6032YSDBkRn4zSdZrhiZhiIdcoRvyg8FgJRhQ6Y-e0x78TLE_IaxUG9-gPPqxMEm4finn1Uvd7fP04d6sbqfT28WteGS5rppqTG066CVnRN916DruYCJYq1EXlBqe5zIHlojFMjOSIWA1qFj1jS94WfV_OBrA6z1Nvp3iJ86gNffQIivGmL2ZoO6o8ZR5dBYJoRlE7Cd5M62fdMqaZgtXpcHr20M5Tkp63XYxaGcr5lUzURSQVVR1QeViSGliO53a0P1Phf9Lxf-BUCJgVA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Jia, Xingbin</creator><creator>Gong, Xiang</creator><creator>Liu, Xiaohuan</creator><creator>Zhao, Xianzhi</creator><creator>Meng, He</creator><creator>Dong, Quanyue</creator><creator>Liu, Guangliang</creator><creator>Gao, Huiwang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2026-0355</orcidid></search><sort><creationdate>20230301</creationdate><title>Deep Sequence Learning for Prediction of Daily NO2 Concentration in Coastal Cities of Northern China</title><author>Jia, Xingbin ; Gong, Xiang ; Liu, Xiaohuan ; Zhao, Xianzhi ; Meng, He ; Dong, Quanyue ; Liu, Guangliang ; Gao, Huiwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Aerosol concentrations</topic><topic>Air pollution</topic><topic>Air pollution control</topic><topic>Algorithms</topic><topic>Atmospheric models</topic><topic>Carbon monoxide</topic><topic>Coastal zone</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Deep learning</topic><topic>Environmental monitoring</topic><topic>Feature selection</topic><topic>History</topic><topic>Humidity</topic><topic>Long short-term memory</topic><topic>Mathematical models</topic><topic>Meteorological data</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Nitrogen dioxide</topic><topic>NO2</topic><topic>Outdoor air quality</topic><topic>Particulate matter</topic><topic>Pollutants</topic><topic>prediction</topic><topic>Predictions</topic><topic>Rain</topic><topic>random forest</topic><topic>Root-mean-square errors</topic><topic>sequence to sequence</topic><topic>Sequencing</topic><topic>Variables</topic><topic>Wavelet transforms</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Xingbin</creatorcontrib><creatorcontrib>Gong, Xiang</creatorcontrib><creatorcontrib>Liu, Xiaohuan</creatorcontrib><creatorcontrib>Zhao, Xianzhi</creatorcontrib><creatorcontrib>Meng, He</creatorcontrib><creatorcontrib>Dong, Quanyue</creatorcontrib><creatorcontrib>Liu, Guangliang</creatorcontrib><creatorcontrib>Gao, Huiwang</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Xingbin</au><au>Gong, Xiang</au><au>Liu, Xiaohuan</au><au>Zhao, Xianzhi</au><au>Meng, He</au><au>Dong, Quanyue</au><au>Liu, Guangliang</au><au>Gao, Huiwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Sequence Learning for Prediction of Daily NO2 Concentration in Coastal Cities of Northern China</atitle><jtitle>Atmosphere</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>14</volume><issue>3</issue><spage>467</spage><pages>467-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>Nitrogen dioxide (NO2) is an important precursor of atmospheric aerosol. Forecasting urban NO2 concentration is vital for effective control of air pollution. This paper proposes a hybrid deep learning model for predicting daily average NO2 concentrations on the next day, based on atmospheric pollutants, meteorological data, and historical data during 2014 to 2020 in five coastal cities of Shandong peninsula, northern China. A random Forest (RF) algorithm was used to select input variables to reduce data dimensionality trained by the sequence to sequence (Seq2Seq) the model and describe how the Seq2Seq model understands each predictor variable. The hybrid model combining an RF with Seq2Seq network (RF-S2S) was evaluated and achieved a Pearson’s correlation coefficient of 0.93, a Nash–Sutcliffe coefficient (NS) of 0.79, a Root Mean Square Error (RMSE) of 5.85 µg/m3, a Mean Absolute Error (MAE) of 4.50 µg/m3, and a Mean Absolute Percentage Error (MAPE) of 20.86%. Feature selection by an RF model improves the performance of the Seq2Seq model, reducing errors by 19.7% (RMSE), 20.3% (MAE), and 29.3% (MAPE), respectively. Carbon monoxide (CO) and PM10 are two common, important features influencing the prediction of NO2 concentrations in coastal areas of northern China. The results of RF-S2S models can capture general trends and disruptions more accurately than can long-short term memory (LSTM) models with and without feature selection. The decreasing tendency of NO2 from 2014 to 2020 illustrated by the empirical mode decomposition (EMD) method is one important obstacle to improving the RF-S2S prediction accuracy. An EMD-based RF-S2S model could help to perform the short-term forecast of NO2 concentrations efficiently.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos14030467</doi><orcidid>https://orcid.org/0000-0003-2026-0355</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4433 |
ispartof | Atmosphere, 2023-03, Vol.14 (3), p.467 |
issn | 2073-4433 2073-4433 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_80cf09fecd244d25ad873fd6b1697c2d |
source | Publicly Available Content Database |
subjects | Accuracy Aerosol concentrations Air pollution Air pollution control Algorithms Atmospheric models Carbon monoxide Coastal zone Correlation coefficient Correlation coefficients Deep learning Environmental monitoring Feature selection History Humidity Long short-term memory Mathematical models Meteorological data Modelling Neural networks Nitrogen dioxide NO2 Outdoor air quality Particulate matter Pollutants prediction Predictions Rain random forest Root-mean-square errors sequence to sequence Sequencing Variables Wavelet transforms Winter |
title | Deep Sequence Learning for Prediction of Daily NO2 Concentration in Coastal Cities of Northern China |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Sequence%20Learning%20for%20Prediction%20of%20Daily%20NO2%20Concentration%20in%20Coastal%20Cities%20of%20Northern%20China&rft.jtitle=Atmosphere&rft.au=Jia,%20Xingbin&rft.date=2023-03-01&rft.volume=14&rft.issue=3&rft.spage=467&rft.pages=467-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos14030467&rft_dat=%3Cproquest_doaj_%3E2791570409%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-160cc088a678f4b81efb34a59267e3a670dbe57ba6c49a78c79eaedfef2dc1bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791570409&rft_id=info:pmid/&rfr_iscdi=true |