Loading…

Modeling a Fluid-Coupled Single Piezoelectric Micromachined Ultrasonic Transducer Using the Finite Difference Method

A complete model was developed to simulate the behavior of a circular clamped axisymmetric fluid-coupled Piezoelectric Micromachined Ultrasonic Transducer (PMUT). Combining Finite Difference and Boundary Element Matrix (FD-BEM), this model is based on the discretization of the partial differential e...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2023-11, Vol.14 (11), p.2089
Main Authors: Goepfert, Valentin, Boulmé, Audren, Levassort, Franck, Merrien, Tony, Rouffaud, Rémi, Certon, Dominique
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c467t-66546e45d089e6136a1da1568592721dc0ccf7a416cba7279c6730dcd94ed143
cites cdi_FETCH-LOGICAL-c467t-66546e45d089e6136a1da1568592721dc0ccf7a416cba7279c6730dcd94ed143
container_end_page
container_issue 11
container_start_page 2089
container_title Micromachines (Basel)
container_volume 14
creator Goepfert, Valentin
Boulmé, Audren
Levassort, Franck
Merrien, Tony
Rouffaud, Rémi
Certon, Dominique
description A complete model was developed to simulate the behavior of a circular clamped axisymmetric fluid-coupled Piezoelectric Micromachined Ultrasonic Transducer (PMUT). Combining Finite Difference and Boundary Element Matrix (FD-BEM), this model is based on the discretization of the partial differential equation used to translate the mechanical behavior of a PMUT. In the model, both the axial and the transverse displacements are preserved in the equation of motion and used to properly define the neutral line position. To introduce fluid coupling, a Green’s function dedicated to axisymmetric circular radiating sources is employed. The resolution of the behavioral equations is used to establish the equivalent electroacoustic circuit of a PMUT that preserves the average particular velocity, the mechanical power, and the acoustic power. Particular consideration is given to verifying the validity of certain assumptions that are usually made across various steps of previously reported analytical models. In this framework, the advantages of the membrane discretization performed in the FD-BEM model are highlighted through accurate simulations of the first vibration mode and especially the cutoff frequency that many other models do not predict. This high cutoff frequency corresponds to cases where the spatial average velocity of the plate is null and is of great importance for PMUT design because it defines the upper limit above which the device is considered to be mechanically blocked. These modeling results are compared with electrical and dynamic membrane displacement measurements of AlN-based (500 nm thick) PMUTs in air and fluid. The first resonance frequency confrontation showed a maximum relative error of 1.13% between the FD model and Finite Element Method (FEM). Moreover, the model perfectly predicts displacement amplitudes when PMUT vibrates in a fluid, with less than 5% relative error. Displacement amplitudes of 16 nm and 20 nm were measured for PMUT with 340 µm and 275 µm diameters, respectively. This complete PMUT model using the FD-BEM approach is shown to be very efficient in terms of computation time and accuracy.
doi_str_mv 10.3390/mi14112089
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_80d2238b11b14b0fb2bb6073b8597a84</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774323776</galeid><doaj_id>oai_doaj_org_article_80d2238b11b14b0fb2bb6073b8597a84</doaj_id><sourcerecordid>A774323776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-66546e45d089e6136a1da1568592721dc0ccf7a416cba7279c6730dcd94ed143</originalsourceid><addsrcrecordid>eNpdkl1rHCEUhofSQEOSm_yCgd60hU39Gp25XLbZJLBLA9lA78TRM7sujm51ptD--jqZ0i8FldfH1-PxFMU1RjeUNuhjbzHDmKC6eVWcEyTIgnP-5fVf6zfFVUpHlJsQTR7Oi2EbDDjr96Uq1260ZrEK48mBKZ-y6KB8tPAjgAM9RKvLrdUx9EofrM_IsxuiSsHnjV1UPplRQyyf02Q3HKBcW28HKD_ZroMIXkO5heEQzGVx1imX4OrXfFHs1re71f1i8_nuYbXcLDTjYsgRV4wDq0x-EXBMucJG4YrXVUMEwUYjrTuhGOa6VYKIRnNBkdGmYWAwoxfFw2xrgjrKU7S9it9lUFa-CCHupYqD1Q5kjQwhtG4xbjFrUdeStuVI0DbfJVQ9eb2fvQ7K_WN1v9zISUOMY8Ir-g1n9t3MnmL4OkIaZG-TBueUhzAmSeqG1owwyjP69j_0GMboc1JeKMwbjOpM3czUXuVYre9CzrvO3UBvdfDQ2awvhWCUUCEm2w_zgfxbKUXofoeMkZxqRf6pFfoT1gSusw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893169108</pqid></control><display><type>article</type><title>Modeling a Fluid-Coupled Single Piezoelectric Micromachined Ultrasonic Transducer Using the Finite Difference Method</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Goepfert, Valentin ; Boulmé, Audren ; Levassort, Franck ; Merrien, Tony ; Rouffaud, Rémi ; Certon, Dominique</creator><creatorcontrib>Goepfert, Valentin ; Boulmé, Audren ; Levassort, Franck ; Merrien, Tony ; Rouffaud, Rémi ; Certon, Dominique</creatorcontrib><description>A complete model was developed to simulate the behavior of a circular clamped axisymmetric fluid-coupled Piezoelectric Micromachined Ultrasonic Transducer (PMUT). Combining Finite Difference and Boundary Element Matrix (FD-BEM), this model is based on the discretization of the partial differential equation used to translate the mechanical behavior of a PMUT. In the model, both the axial and the transverse displacements are preserved in the equation of motion and used to properly define the neutral line position. To introduce fluid coupling, a Green’s function dedicated to axisymmetric circular radiating sources is employed. The resolution of the behavioral equations is used to establish the equivalent electroacoustic circuit of a PMUT that preserves the average particular velocity, the mechanical power, and the acoustic power. Particular consideration is given to verifying the validity of certain assumptions that are usually made across various steps of previously reported analytical models. In this framework, the advantages of the membrane discretization performed in the FD-BEM model are highlighted through accurate simulations of the first vibration mode and especially the cutoff frequency that many other models do not predict. This high cutoff frequency corresponds to cases where the spatial average velocity of the plate is null and is of great importance for PMUT design because it defines the upper limit above which the device is considered to be mechanically blocked. These modeling results are compared with electrical and dynamic membrane displacement measurements of AlN-based (500 nm thick) PMUTs in air and fluid. The first resonance frequency confrontation showed a maximum relative error of 1.13% between the FD model and Finite Element Method (FEM). Moreover, the model perfectly predicts displacement amplitudes when PMUT vibrates in a fluid, with less than 5% relative error. Displacement amplitudes of 16 nm and 20 nm were measured for PMUT with 340 µm and 275 µm diameters, respectively. This complete PMUT model using the FD-BEM approach is shown to be very efficient in terms of computation time and accuracy.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi14112089</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acoustics ; Aluminum compounds ; Amplitudes ; characterization ; Circuits ; Deformation ; Diameters ; Differential equations ; Discretization ; Displacement ; Engineering Sciences ; Equations of motion ; Etching ; Finite difference method ; Finite element method ; Green's functions ; Hypotheses ; lumped-element ; Manufacturing ; Mathematical analysis ; Mathematical models ; Mathematical Physics ; Mechanical properties ; Mechanics ; Membranes ; MEMS ; Methods ; Microelectromechanical systems ; Micromachining ; Modelling ; Partial differential equations ; Physics ; Piezoelectricity ; PMUT ; Radiation ; Simulation methods ; Transducers ; Ultrasonic imaging ; Ultrasonic transducers ; ultrasound ; Vibration mode ; Zinc oxides</subject><ispartof>Micromachines (Basel), 2023-11, Vol.14 (11), p.2089</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-66546e45d089e6136a1da1568592721dc0ccf7a416cba7279c6730dcd94ed143</citedby><cites>FETCH-LOGICAL-c467t-66546e45d089e6136a1da1568592721dc0ccf7a416cba7279c6730dcd94ed143</cites><orcidid>0000-0002-2019-9390 ; 0000-0002-4458-0831 ; 0000-0003-2752-5459 ; 0000-0001-5963-7119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2893169108/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2893169108?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04612653$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goepfert, Valentin</creatorcontrib><creatorcontrib>Boulmé, Audren</creatorcontrib><creatorcontrib>Levassort, Franck</creatorcontrib><creatorcontrib>Merrien, Tony</creatorcontrib><creatorcontrib>Rouffaud, Rémi</creatorcontrib><creatorcontrib>Certon, Dominique</creatorcontrib><title>Modeling a Fluid-Coupled Single Piezoelectric Micromachined Ultrasonic Transducer Using the Finite Difference Method</title><title>Micromachines (Basel)</title><description>A complete model was developed to simulate the behavior of a circular clamped axisymmetric fluid-coupled Piezoelectric Micromachined Ultrasonic Transducer (PMUT). Combining Finite Difference and Boundary Element Matrix (FD-BEM), this model is based on the discretization of the partial differential equation used to translate the mechanical behavior of a PMUT. In the model, both the axial and the transverse displacements are preserved in the equation of motion and used to properly define the neutral line position. To introduce fluid coupling, a Green’s function dedicated to axisymmetric circular radiating sources is employed. The resolution of the behavioral equations is used to establish the equivalent electroacoustic circuit of a PMUT that preserves the average particular velocity, the mechanical power, and the acoustic power. Particular consideration is given to verifying the validity of certain assumptions that are usually made across various steps of previously reported analytical models. In this framework, the advantages of the membrane discretization performed in the FD-BEM model are highlighted through accurate simulations of the first vibration mode and especially the cutoff frequency that many other models do not predict. This high cutoff frequency corresponds to cases where the spatial average velocity of the plate is null and is of great importance for PMUT design because it defines the upper limit above which the device is considered to be mechanically blocked. These modeling results are compared with electrical and dynamic membrane displacement measurements of AlN-based (500 nm thick) PMUTs in air and fluid. The first resonance frequency confrontation showed a maximum relative error of 1.13% between the FD model and Finite Element Method (FEM). Moreover, the model perfectly predicts displacement amplitudes when PMUT vibrates in a fluid, with less than 5% relative error. Displacement amplitudes of 16 nm and 20 nm were measured for PMUT with 340 µm and 275 µm diameters, respectively. This complete PMUT model using the FD-BEM approach is shown to be very efficient in terms of computation time and accuracy.</description><subject>Acoustics</subject><subject>Aluminum compounds</subject><subject>Amplitudes</subject><subject>characterization</subject><subject>Circuits</subject><subject>Deformation</subject><subject>Diameters</subject><subject>Differential equations</subject><subject>Discretization</subject><subject>Displacement</subject><subject>Engineering Sciences</subject><subject>Equations of motion</subject><subject>Etching</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>Green's functions</subject><subject>Hypotheses</subject><subject>lumped-element</subject><subject>Manufacturing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical Physics</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Membranes</subject><subject>MEMS</subject><subject>Methods</subject><subject>Microelectromechanical systems</subject><subject>Micromachining</subject><subject>Modelling</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Piezoelectricity</subject><subject>PMUT</subject><subject>Radiation</subject><subject>Simulation methods</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic transducers</subject><subject>ultrasound</subject><subject>Vibration mode</subject><subject>Zinc oxides</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rHCEUhofSQEOSm_yCgd60hU39Gp25XLbZJLBLA9lA78TRM7sujm51ptD--jqZ0i8FldfH1-PxFMU1RjeUNuhjbzHDmKC6eVWcEyTIgnP-5fVf6zfFVUpHlJsQTR7Oi2EbDDjr96Uq1260ZrEK48mBKZ-y6KB8tPAjgAM9RKvLrdUx9EofrM_IsxuiSsHnjV1UPplRQyyf02Q3HKBcW28HKD_ZroMIXkO5heEQzGVx1imX4OrXfFHs1re71f1i8_nuYbXcLDTjYsgRV4wDq0x-EXBMucJG4YrXVUMEwUYjrTuhGOa6VYKIRnNBkdGmYWAwoxfFw2xrgjrKU7S9it9lUFa-CCHupYqD1Q5kjQwhtG4xbjFrUdeStuVI0DbfJVQ9eb2fvQ7K_WN1v9zISUOMY8Ir-g1n9t3MnmL4OkIaZG-TBueUhzAmSeqG1owwyjP69j_0GMboc1JeKMwbjOpM3czUXuVYre9CzrvO3UBvdfDQ2awvhWCUUCEm2w_zgfxbKUXofoeMkZxqRf6pFfoT1gSusw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Goepfert, Valentin</creator><creator>Boulmé, Audren</creator><creator>Levassort, Franck</creator><creator>Merrien, Tony</creator><creator>Rouffaud, Rémi</creator><creator>Certon, Dominique</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2019-9390</orcidid><orcidid>https://orcid.org/0000-0002-4458-0831</orcidid><orcidid>https://orcid.org/0000-0003-2752-5459</orcidid><orcidid>https://orcid.org/0000-0001-5963-7119</orcidid></search><sort><creationdate>20231101</creationdate><title>Modeling a Fluid-Coupled Single Piezoelectric Micromachined Ultrasonic Transducer Using the Finite Difference Method</title><author>Goepfert, Valentin ; Boulmé, Audren ; Levassort, Franck ; Merrien, Tony ; Rouffaud, Rémi ; Certon, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-66546e45d089e6136a1da1568592721dc0ccf7a416cba7279c6730dcd94ed143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustics</topic><topic>Aluminum compounds</topic><topic>Amplitudes</topic><topic>characterization</topic><topic>Circuits</topic><topic>Deformation</topic><topic>Diameters</topic><topic>Differential equations</topic><topic>Discretization</topic><topic>Displacement</topic><topic>Engineering Sciences</topic><topic>Equations of motion</topic><topic>Etching</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>Green's functions</topic><topic>Hypotheses</topic><topic>lumped-element</topic><topic>Manufacturing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical Physics</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Membranes</topic><topic>MEMS</topic><topic>Methods</topic><topic>Microelectromechanical systems</topic><topic>Micromachining</topic><topic>Modelling</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Piezoelectricity</topic><topic>PMUT</topic><topic>Radiation</topic><topic>Simulation methods</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic transducers</topic><topic>ultrasound</topic><topic>Vibration mode</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goepfert, Valentin</creatorcontrib><creatorcontrib>Boulmé, Audren</creatorcontrib><creatorcontrib>Levassort, Franck</creatorcontrib><creatorcontrib>Merrien, Tony</creatorcontrib><creatorcontrib>Rouffaud, Rémi</creatorcontrib><creatorcontrib>Certon, Dominique</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goepfert, Valentin</au><au>Boulmé, Audren</au><au>Levassort, Franck</au><au>Merrien, Tony</au><au>Rouffaud, Rémi</au><au>Certon, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling a Fluid-Coupled Single Piezoelectric Micromachined Ultrasonic Transducer Using the Finite Difference Method</atitle><jtitle>Micromachines (Basel)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>14</volume><issue>11</issue><spage>2089</spage><pages>2089-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>A complete model was developed to simulate the behavior of a circular clamped axisymmetric fluid-coupled Piezoelectric Micromachined Ultrasonic Transducer (PMUT). Combining Finite Difference and Boundary Element Matrix (FD-BEM), this model is based on the discretization of the partial differential equation used to translate the mechanical behavior of a PMUT. In the model, both the axial and the transverse displacements are preserved in the equation of motion and used to properly define the neutral line position. To introduce fluid coupling, a Green’s function dedicated to axisymmetric circular radiating sources is employed. The resolution of the behavioral equations is used to establish the equivalent electroacoustic circuit of a PMUT that preserves the average particular velocity, the mechanical power, and the acoustic power. Particular consideration is given to verifying the validity of certain assumptions that are usually made across various steps of previously reported analytical models. In this framework, the advantages of the membrane discretization performed in the FD-BEM model are highlighted through accurate simulations of the first vibration mode and especially the cutoff frequency that many other models do not predict. This high cutoff frequency corresponds to cases where the spatial average velocity of the plate is null and is of great importance for PMUT design because it defines the upper limit above which the device is considered to be mechanically blocked. These modeling results are compared with electrical and dynamic membrane displacement measurements of AlN-based (500 nm thick) PMUTs in air and fluid. The first resonance frequency confrontation showed a maximum relative error of 1.13% between the FD model and Finite Element Method (FEM). Moreover, the model perfectly predicts displacement amplitudes when PMUT vibrates in a fluid, with less than 5% relative error. Displacement amplitudes of 16 nm and 20 nm were measured for PMUT with 340 µm and 275 µm diameters, respectively. This complete PMUT model using the FD-BEM approach is shown to be very efficient in terms of computation time and accuracy.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/mi14112089</doi><orcidid>https://orcid.org/0000-0002-2019-9390</orcidid><orcidid>https://orcid.org/0000-0002-4458-0831</orcidid><orcidid>https://orcid.org/0000-0003-2752-5459</orcidid><orcidid>https://orcid.org/0000-0001-5963-7119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2023-11, Vol.14 (11), p.2089
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_80d2238b11b14b0fb2bb6073b8597a84
source Publicly Available Content Database; PubMed Central
subjects Acoustics
Aluminum compounds
Amplitudes
characterization
Circuits
Deformation
Diameters
Differential equations
Discretization
Displacement
Engineering Sciences
Equations of motion
Etching
Finite difference method
Finite element method
Green's functions
Hypotheses
lumped-element
Manufacturing
Mathematical analysis
Mathematical models
Mathematical Physics
Mechanical properties
Mechanics
Membranes
MEMS
Methods
Microelectromechanical systems
Micromachining
Modelling
Partial differential equations
Physics
Piezoelectricity
PMUT
Radiation
Simulation methods
Transducers
Ultrasonic imaging
Ultrasonic transducers
ultrasound
Vibration mode
Zinc oxides
title Modeling a Fluid-Coupled Single Piezoelectric Micromachined Ultrasonic Transducer Using the Finite Difference Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20a%20Fluid-Coupled%20Single%20Piezoelectric%20Micromachined%20Ultrasonic%20Transducer%20Using%20the%20Finite%20Difference%20Method&rft.jtitle=Micromachines%20(Basel)&rft.au=Goepfert,%20Valentin&rft.date=2023-11-01&rft.volume=14&rft.issue=11&rft.spage=2089&rft.pages=2089-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi14112089&rft_dat=%3Cgale_doaj_%3EA774323776%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-66546e45d089e6136a1da1568592721dc0ccf7a416cba7279c6730dcd94ed143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2893169108&rft_id=info:pmid/&rft_galeid=A774323776&rfr_iscdi=true