Loading…

Global balanced wind derived from SABER temperature and pressure observations and its validations

Zonal winds in the stratosphere and mesosphere play important roles in atmospheric dynamics and aeronomy. However, the direct measurement of winds in this height range is difficult. We present a dataset of the monthly mean zonal wind in the height range of 18–100 km and at latitudes of 50∘ S–50∘ N f...

Full description

Saved in:
Bibliographic Details
Published in:Earth system science data 2021-12, Vol.13 (12), p.5643-5661
Main Authors: Liu, Xiao, Xu, Jiyao, Yue, Jia, Yu, You, Batista, Paulo P, Andrioli, Vania F, Liu, Zhengkuan, Yuan, Tao, Wang, Chi, Zou, Ziming, Li, Guozhu, Russell III, James M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c549t-4773ffdfdf24aaff36bab8123bbeb506f6e1dc7402cc05d98edee35632fd78673
cites cdi_FETCH-LOGICAL-c549t-4773ffdfdf24aaff36bab8123bbeb506f6e1dc7402cc05d98edee35632fd78673
container_end_page 5661
container_issue 12
container_start_page 5643
container_title Earth system science data
container_volume 13
creator Liu, Xiao
Xu, Jiyao
Yue, Jia
Yu, You
Batista, Paulo P
Andrioli, Vania F
Liu, Zhengkuan
Yuan, Tao
Wang, Chi
Zou, Ziming
Li, Guozhu
Russell III, James M
description Zonal winds in the stratosphere and mesosphere play important roles in atmospheric dynamics and aeronomy. However, the direct measurement of winds in this height range is difficult. We present a dataset of the monthly mean zonal wind in the height range of 18–100 km and at latitudes of 50∘ S–50∘ N from 2002 to 2019, derived by the gradient balance wind theory and the temperature and pressure observed by the SABER instrument. The tide alias above 80 km at the Equator is replaced by the monthly mean zonal wind measured by a meteor radar at 0.2∘ S. The dataset (named BU) is validated by comparing with the zonal wind from MERRA2 (MerU), UARP (UraU), the HWM14 empirical model (HwmU), meteor radar (MetU), and lidar (LidU) at seven stations from around 50∘ N to 29.7∘ S. At 18–70 km, BU and MerU have (i) nearly identical zero wind lines and (ii) year-to-year variations of the eastward and westward wind jets at middle and high latitudes, and (iii) the quasi-biennial oscillation (QBO) and semi-annual oscillation (SAO) especially the disrupted QBO in early 2016. The comparisons among BU, UraU, and HwmU show good agreement in general below 80 km. Above 80 km, the agreements among BU, UraU, HwmU, MetU, and LidU are good in general, except some discrepancies at limited heights and months. The BU data are archived as netCDF files and are available at https://doi.org/10.12176/01.99.00574 (Liu et al., 2021). The advantages of the global BU dataset are its large vertical extent (from the stratosphere to the lower thermosphere) and 18-year internally consistent time series (2002–2019). The BU data is useful to study the temporal variations with periods ranging from seasons to decades at 50∘ S–50∘ N. It can also be used as the background wind for atmospheric wave propagation.
doi_str_mv 10.5194/essd-13-5643-2021
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_80ec7ad2d7034339a11f7ff345c55ffb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A685745732</galeid><doaj_id>oai_doaj_org_article_80ec7ad2d7034339a11f7ff345c55ffb</doaj_id><sourcerecordid>A685745732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-4773ffdfdf24aaff36bab8123bbeb506f6e1dc7402cc05d98edee35632fd78673</originalsourceid><addsrcrecordid>eNptkk1r3DAQhk1poWnaH9CboacenEjWl33chjRdCBTycRZjabRosa2tpN2m_75yNrRdKEJIM3rmHUm8VfWRkgtBe36JKdmGskZIzpqWtPRVdUY7KRsmqHz9z_5t9S6lLSGSUyXOKrgZwwBjXSbMBm3908-2thj9oQQuhqm-X325vqszTjuMkPcRayjILpaWSxCGhPEA2Yc5PZ_4nOoDjN4ec--rNw7GhB9e1vPq8ev1w9W35vb7zfpqddsYwfvccKWYc7aMlgM4x-QAQ0dbNgw4CCKdRGqN4qQ1hgjbd2gRmZCsdVZ1UrHzan3UtQG2ehf9BPGXDuD1cyLEjYaYvRlRdwSNAttaRRhnrAdKnSotuTBCODcUrU9HrV0MP_aYst6GfZzL9XUriSr_q2T_l9pAEfWzCzmCmXwyeiU7obhQrC3UxX-oMixO3oQZnS_5k4LPJwWFyfiUN7BPSa_v705ZemRNDClFdH8eTolejKEXY2jK9GIMvRiD_QbPvKuE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607202769</pqid></control><display><type>article</type><title>Global balanced wind derived from SABER temperature and pressure observations and its validations</title><source>EZB Free E-Journals</source><source>ProQuest - Publicly Available Content Database</source><creator>Liu, Xiao ; Xu, Jiyao ; Yue, Jia ; Yu, You ; Batista, Paulo P ; Andrioli, Vania F ; Liu, Zhengkuan ; Yuan, Tao ; Wang, Chi ; Zou, Ziming ; Li, Guozhu ; Russell III, James M</creator><creatorcontrib>Liu, Xiao ; Xu, Jiyao ; Yue, Jia ; Yu, You ; Batista, Paulo P ; Andrioli, Vania F ; Liu, Zhengkuan ; Yuan, Tao ; Wang, Chi ; Zou, Ziming ; Li, Guozhu ; Russell III, James M</creatorcontrib><description>Zonal winds in the stratosphere and mesosphere play important roles in atmospheric dynamics and aeronomy. However, the direct measurement of winds in this height range is difficult. We present a dataset of the monthly mean zonal wind in the height range of 18–100 km and at latitudes of 50∘ S–50∘ N from 2002 to 2019, derived by the gradient balance wind theory and the temperature and pressure observed by the SABER instrument. The tide alias above 80 km at the Equator is replaced by the monthly mean zonal wind measured by a meteor radar at 0.2∘ S. The dataset (named BU) is validated by comparing with the zonal wind from MERRA2 (MerU), UARP (UraU), the HWM14 empirical model (HwmU), meteor radar (MetU), and lidar (LidU) at seven stations from around 50∘ N to 29.7∘ S. At 18–70 km, BU and MerU have (i) nearly identical zero wind lines and (ii) year-to-year variations of the eastward and westward wind jets at middle and high latitudes, and (iii) the quasi-biennial oscillation (QBO) and semi-annual oscillation (SAO) especially the disrupted QBO in early 2016. The comparisons among BU, UraU, and HwmU show good agreement in general below 80 km. Above 80 km, the agreements among BU, UraU, HwmU, MetU, and LidU are good in general, except some discrepancies at limited heights and months. The BU data are archived as netCDF files and are available at https://doi.org/10.12176/01.99.00574 (Liu et al., 2021). The advantages of the global BU dataset are its large vertical extent (from the stratosphere to the lower thermosphere) and 18-year internally consistent time series (2002–2019). The BU data is useful to study the temporal variations with periods ranging from seasons to decades at 50∘ S–50∘ N. It can also be used as the background wind for atmospheric wave propagation.</description><identifier>ISSN: 1866-3516</identifier><identifier>ISSN: 1866-3508</identifier><identifier>EISSN: 1866-3516</identifier><identifier>DOI: 10.5194/essd-13-5643-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aeronomy ; Agreements ; Analysis ; Annual oscillation ; Atmosphere ; Atmosphere, Upper ; Atmospheric dynamics ; Atmospheric waves ; Climate ; Datasets ; Dynamic meteorology ; Empirical models ; Equator ; Height ; Ionosphere ; Lidar ; Lower mantle ; Lower thermosphere ; Mesosphere ; Meteors ; Quasi-biennial oscillation ; Radar ; Semiannual oscillation ; Stratosphere ; Temperature ; Temporal variations ; Thermosphere ; Wave propagation ; Wind ; Wind measurement ; Winds ; Zonal winds</subject><ispartof>Earth system science data, 2021-12, Vol.13 (12), p.5643-5661</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-4773ffdfdf24aaff36bab8123bbeb506f6e1dc7402cc05d98edee35632fd78673</citedby><cites>FETCH-LOGICAL-c549t-4773ffdfdf24aaff36bab8123bbeb506f6e1dc7402cc05d98edee35632fd78673</cites><orcidid>0000-0001-6302-7516 ; 0000-0003-0577-5289 ; 0000-0002-4835-7696 ; 0000-0002-5448-5803 ; 0000-0002-7669-3590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2607202769/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2607202769?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Xu, Jiyao</creatorcontrib><creatorcontrib>Yue, Jia</creatorcontrib><creatorcontrib>Yu, You</creatorcontrib><creatorcontrib>Batista, Paulo P</creatorcontrib><creatorcontrib>Andrioli, Vania F</creatorcontrib><creatorcontrib>Liu, Zhengkuan</creatorcontrib><creatorcontrib>Yuan, Tao</creatorcontrib><creatorcontrib>Wang, Chi</creatorcontrib><creatorcontrib>Zou, Ziming</creatorcontrib><creatorcontrib>Li, Guozhu</creatorcontrib><creatorcontrib>Russell III, James M</creatorcontrib><title>Global balanced wind derived from SABER temperature and pressure observations and its validations</title><title>Earth system science data</title><description>Zonal winds in the stratosphere and mesosphere play important roles in atmospheric dynamics and aeronomy. However, the direct measurement of winds in this height range is difficult. We present a dataset of the monthly mean zonal wind in the height range of 18–100 km and at latitudes of 50∘ S–50∘ N from 2002 to 2019, derived by the gradient balance wind theory and the temperature and pressure observed by the SABER instrument. The tide alias above 80 km at the Equator is replaced by the monthly mean zonal wind measured by a meteor radar at 0.2∘ S. The dataset (named BU) is validated by comparing with the zonal wind from MERRA2 (MerU), UARP (UraU), the HWM14 empirical model (HwmU), meteor radar (MetU), and lidar (LidU) at seven stations from around 50∘ N to 29.7∘ S. At 18–70 km, BU and MerU have (i) nearly identical zero wind lines and (ii) year-to-year variations of the eastward and westward wind jets at middle and high latitudes, and (iii) the quasi-biennial oscillation (QBO) and semi-annual oscillation (SAO) especially the disrupted QBO in early 2016. The comparisons among BU, UraU, and HwmU show good agreement in general below 80 km. Above 80 km, the agreements among BU, UraU, HwmU, MetU, and LidU are good in general, except some discrepancies at limited heights and months. The BU data are archived as netCDF files and are available at https://doi.org/10.12176/01.99.00574 (Liu et al., 2021). The advantages of the global BU dataset are its large vertical extent (from the stratosphere to the lower thermosphere) and 18-year internally consistent time series (2002–2019). The BU data is useful to study the temporal variations with periods ranging from seasons to decades at 50∘ S–50∘ N. It can also be used as the background wind for atmospheric wave propagation.</description><subject>Aeronomy</subject><subject>Agreements</subject><subject>Analysis</subject><subject>Annual oscillation</subject><subject>Atmosphere</subject><subject>Atmosphere, Upper</subject><subject>Atmospheric dynamics</subject><subject>Atmospheric waves</subject><subject>Climate</subject><subject>Datasets</subject><subject>Dynamic meteorology</subject><subject>Empirical models</subject><subject>Equator</subject><subject>Height</subject><subject>Ionosphere</subject><subject>Lidar</subject><subject>Lower mantle</subject><subject>Lower thermosphere</subject><subject>Mesosphere</subject><subject>Meteors</subject><subject>Quasi-biennial oscillation</subject><subject>Radar</subject><subject>Semiannual oscillation</subject><subject>Stratosphere</subject><subject>Temperature</subject><subject>Temporal variations</subject><subject>Thermosphere</subject><subject>Wave propagation</subject><subject>Wind</subject><subject>Wind measurement</subject><subject>Winds</subject><subject>Zonal winds</subject><issn>1866-3516</issn><issn>1866-3508</issn><issn>1866-3516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1r3DAQhk1poWnaH9CboacenEjWl33chjRdCBTycRZjabRosa2tpN2m_75yNrRdKEJIM3rmHUm8VfWRkgtBe36JKdmGskZIzpqWtPRVdUY7KRsmqHz9z_5t9S6lLSGSUyXOKrgZwwBjXSbMBm3908-2thj9oQQuhqm-X325vqszTjuMkPcRayjILpaWSxCGhPEA2Yc5PZ_4nOoDjN4ec--rNw7GhB9e1vPq8ev1w9W35vb7zfpqddsYwfvccKWYc7aMlgM4x-QAQ0dbNgw4CCKdRGqN4qQ1hgjbd2gRmZCsdVZ1UrHzan3UtQG2ehf9BPGXDuD1cyLEjYaYvRlRdwSNAttaRRhnrAdKnSotuTBCODcUrU9HrV0MP_aYst6GfZzL9XUriSr_q2T_l9pAEfWzCzmCmXwyeiU7obhQrC3UxX-oMixO3oQZnS_5k4LPJwWFyfiUN7BPSa_v705ZemRNDClFdH8eTolejKEXY2jK9GIMvRiD_QbPvKuE</recordid><startdate>20211207</startdate><enddate>20211207</enddate><creator>Liu, Xiao</creator><creator>Xu, Jiyao</creator><creator>Yue, Jia</creator><creator>Yu, You</creator><creator>Batista, Paulo P</creator><creator>Andrioli, Vania F</creator><creator>Liu, Zhengkuan</creator><creator>Yuan, Tao</creator><creator>Wang, Chi</creator><creator>Zou, Ziming</creator><creator>Li, Guozhu</creator><creator>Russell III, James M</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6302-7516</orcidid><orcidid>https://orcid.org/0000-0003-0577-5289</orcidid><orcidid>https://orcid.org/0000-0002-4835-7696</orcidid><orcidid>https://orcid.org/0000-0002-5448-5803</orcidid><orcidid>https://orcid.org/0000-0002-7669-3590</orcidid></search><sort><creationdate>20211207</creationdate><title>Global balanced wind derived from SABER temperature and pressure observations and its validations</title><author>Liu, Xiao ; Xu, Jiyao ; Yue, Jia ; Yu, You ; Batista, Paulo P ; Andrioli, Vania F ; Liu, Zhengkuan ; Yuan, Tao ; Wang, Chi ; Zou, Ziming ; Li, Guozhu ; Russell III, James M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-4773ffdfdf24aaff36bab8123bbeb506f6e1dc7402cc05d98edee35632fd78673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aeronomy</topic><topic>Agreements</topic><topic>Analysis</topic><topic>Annual oscillation</topic><topic>Atmosphere</topic><topic>Atmosphere, Upper</topic><topic>Atmospheric dynamics</topic><topic>Atmospheric waves</topic><topic>Climate</topic><topic>Datasets</topic><topic>Dynamic meteorology</topic><topic>Empirical models</topic><topic>Equator</topic><topic>Height</topic><topic>Ionosphere</topic><topic>Lidar</topic><topic>Lower mantle</topic><topic>Lower thermosphere</topic><topic>Mesosphere</topic><topic>Meteors</topic><topic>Quasi-biennial oscillation</topic><topic>Radar</topic><topic>Semiannual oscillation</topic><topic>Stratosphere</topic><topic>Temperature</topic><topic>Temporal variations</topic><topic>Thermosphere</topic><topic>Wave propagation</topic><topic>Wind</topic><topic>Wind measurement</topic><topic>Winds</topic><topic>Zonal winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Xu, Jiyao</creatorcontrib><creatorcontrib>Yue, Jia</creatorcontrib><creatorcontrib>Yu, You</creatorcontrib><creatorcontrib>Batista, Paulo P</creatorcontrib><creatorcontrib>Andrioli, Vania F</creatorcontrib><creatorcontrib>Liu, Zhengkuan</creatorcontrib><creatorcontrib>Yuan, Tao</creatorcontrib><creatorcontrib>Wang, Chi</creatorcontrib><creatorcontrib>Zou, Ziming</creatorcontrib><creatorcontrib>Li, Guozhu</creatorcontrib><creatorcontrib>Russell III, James M</creatorcontrib><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Earth system science data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiao</au><au>Xu, Jiyao</au><au>Yue, Jia</au><au>Yu, You</au><au>Batista, Paulo P</au><au>Andrioli, Vania F</au><au>Liu, Zhengkuan</au><au>Yuan, Tao</au><au>Wang, Chi</au><au>Zou, Ziming</au><au>Li, Guozhu</au><au>Russell III, James M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global balanced wind derived from SABER temperature and pressure observations and its validations</atitle><jtitle>Earth system science data</jtitle><date>2021-12-07</date><risdate>2021</risdate><volume>13</volume><issue>12</issue><spage>5643</spage><epage>5661</epage><pages>5643-5661</pages><issn>1866-3516</issn><issn>1866-3508</issn><eissn>1866-3516</eissn><abstract>Zonal winds in the stratosphere and mesosphere play important roles in atmospheric dynamics and aeronomy. However, the direct measurement of winds in this height range is difficult. We present a dataset of the monthly mean zonal wind in the height range of 18–100 km and at latitudes of 50∘ S–50∘ N from 2002 to 2019, derived by the gradient balance wind theory and the temperature and pressure observed by the SABER instrument. The tide alias above 80 km at the Equator is replaced by the monthly mean zonal wind measured by a meteor radar at 0.2∘ S. The dataset (named BU) is validated by comparing with the zonal wind from MERRA2 (MerU), UARP (UraU), the HWM14 empirical model (HwmU), meteor radar (MetU), and lidar (LidU) at seven stations from around 50∘ N to 29.7∘ S. At 18–70 km, BU and MerU have (i) nearly identical zero wind lines and (ii) year-to-year variations of the eastward and westward wind jets at middle and high latitudes, and (iii) the quasi-biennial oscillation (QBO) and semi-annual oscillation (SAO) especially the disrupted QBO in early 2016. The comparisons among BU, UraU, and HwmU show good agreement in general below 80 km. Above 80 km, the agreements among BU, UraU, HwmU, MetU, and LidU are good in general, except some discrepancies at limited heights and months. The BU data are archived as netCDF files and are available at https://doi.org/10.12176/01.99.00574 (Liu et al., 2021). The advantages of the global BU dataset are its large vertical extent (from the stratosphere to the lower thermosphere) and 18-year internally consistent time series (2002–2019). The BU data is useful to study the temporal variations with periods ranging from seasons to decades at 50∘ S–50∘ N. It can also be used as the background wind for atmospheric wave propagation.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/essd-13-5643-2021</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6302-7516</orcidid><orcidid>https://orcid.org/0000-0003-0577-5289</orcidid><orcidid>https://orcid.org/0000-0002-4835-7696</orcidid><orcidid>https://orcid.org/0000-0002-5448-5803</orcidid><orcidid>https://orcid.org/0000-0002-7669-3590</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1866-3516
ispartof Earth system science data, 2021-12, Vol.13 (12), p.5643-5661
issn 1866-3516
1866-3508
1866-3516
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_80ec7ad2d7034339a11f7ff345c55ffb
source EZB Free E-Journals; ProQuest - Publicly Available Content Database
subjects Aeronomy
Agreements
Analysis
Annual oscillation
Atmosphere
Atmosphere, Upper
Atmospheric dynamics
Atmospheric waves
Climate
Datasets
Dynamic meteorology
Empirical models
Equator
Height
Ionosphere
Lidar
Lower mantle
Lower thermosphere
Mesosphere
Meteors
Quasi-biennial oscillation
Radar
Semiannual oscillation
Stratosphere
Temperature
Temporal variations
Thermosphere
Wave propagation
Wind
Wind measurement
Winds
Zonal winds
title Global balanced wind derived from SABER temperature and pressure observations and its validations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20balanced%20wind%20derived%20from%20SABER%20temperature%20and%20pressure%20observations%20and%20its%20validations&rft.jtitle=Earth%20system%20science%20data&rft.au=Liu,%20Xiao&rft.date=2021-12-07&rft.volume=13&rft.issue=12&rft.spage=5643&rft.epage=5661&rft.pages=5643-5661&rft.issn=1866-3516&rft.eissn=1866-3516&rft_id=info:doi/10.5194/essd-13-5643-2021&rft_dat=%3Cgale_doaj_%3EA685745732%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-4773ffdfdf24aaff36bab8123bbeb506f6e1dc7402cc05d98edee35632fd78673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607202769&rft_id=info:pmid/&rft_galeid=A685745732&rfr_iscdi=true