Loading…

Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator

Sodium metal batteries are considered one of the most promising low-cost high-energy-density electrochemical energy storage systems. However, the growth of unfavourable Na metal deposition and the limited cell cycle life hamper the application of this battery system at a large scale. Here, we propos...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-10, Vol.12 (1), p.5786-5786, Article 5786
Main Authors: Qin, Jieqiong, Shi, Haodong, Huang, Kai, Lu, Pengfei, Wen, Pengchao, Xing, Feifei, Yang, Bing, Ye, Mao, Yu, Yan, Wu, Zhong-Shuai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3
cites cdi_FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3
container_end_page 5786
container_issue 1
container_start_page 5786
container_title Nature communications
container_volume 12
creator Qin, Jieqiong
Shi, Haodong
Huang, Kai
Lu, Pengfei
Wen, Pengchao
Xing, Feifei
Yang, Bing
Ye, Mao
Yu, Yan
Wu, Zhong-Shuai
description Sodium metal batteries are considered one of the most promising low-cost high-energy-density electrochemical energy storage systems. However, the growth of unfavourable Na metal deposition and the limited cell cycle life hamper the application of this battery system at a large scale. Here, we propose the use of polypropylene separator coated with a composite material comprising polydopamine and multilayer graphene to tackle these issues. The oxygen- and nitrogen- containing moieties as well as the nano- and meso- porous network of the coating allow cycling of Na metal electrodes in symmetric cell configuration for over 2000 h with a stable 4 mV overpotential at 1 mA cm −2 . When tested in full Na || Na 3 V 2 (PO 4 ) 3 coin cell, the coated separator enables the delivery of a stable capacity of about 100 mAh g −1 for 500 cycles (90% capacity retention) at a specific current of 235 mA g −1 and satisfactory rate capability performances (i.e., 75 mAh g −1 at 3.5 A g −1 ). The development of future Na metal batteries relies on the cycling stability of the metallic anode. Here, the authors propose a polypropylene separator functionalized with polydopamine and multilayer graphene to enable stable and prolonged Na metal cell cycling.
doi_str_mv 10.1038/s41467-021-26032-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8100296056e5466da3a8b44a0b27fb03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8100296056e5466da3a8b44a0b27fb03</doaj_id><sourcerecordid>2578273062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-AUiQuXUI-_4lyQqoqPShVc4GxNnPFuFicOdnal_fdkNxVQDvhia-aZR9boLYrXwN4BE-YmS5C6rhiHimsmeAXPikvOJFRQc_H8r_dFcZ3zji1HNGCkfFlcCKmaBrS6LH7cum1Ph37clHnGNlD5BcuBZgylO7pwqh96LKcYjl2ccOhHuhn2Ye4DHimVm4TTlkYqXcT5BEdfrvSU4nQMp1amCRPOMb0qXngMma4f76vi-8cP3-4-Vw9fP93f3T5UTkE9V8KT45KR8q0BxaD1mhnvde1aWXcNOjCekDsCqGUjvBeq61SjTA3Ct0DiqrhfvV3EnZ1SP2A62oi9PRdi2lhMc-8CWQOM8UYzpUlJrTsUaFopkbW89i0Ti-v96pr27UCdo3FOGJ5In3bGfms38WCNNHpZ9iJ4-yhI8eee8myHPjsKAUeK-2y5qk2tNQBf0Df_oLu4T-OyqjPFa8H0ieIr5VLMOZH__Rlg9hQNu0bDLtGw52hYWIbEOpQXeNxQ-qP-z9QvAWK76g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578273062</pqid></control><display><type>article</type><title>Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Qin, Jieqiong ; Shi, Haodong ; Huang, Kai ; Lu, Pengfei ; Wen, Pengchao ; Xing, Feifei ; Yang, Bing ; Ye, Mao ; Yu, Yan ; Wu, Zhong-Shuai</creator><creatorcontrib>Qin, Jieqiong ; Shi, Haodong ; Huang, Kai ; Lu, Pengfei ; Wen, Pengchao ; Xing, Feifei ; Yang, Bing ; Ye, Mao ; Yu, Yan ; Wu, Zhong-Shuai</creatorcontrib><description>Sodium metal batteries are considered one of the most promising low-cost high-energy-density electrochemical energy storage systems. However, the growth of unfavourable Na metal deposition and the limited cell cycle life hamper the application of this battery system at a large scale. Here, we propose the use of polypropylene separator coated with a composite material comprising polydopamine and multilayer graphene to tackle these issues. The oxygen- and nitrogen- containing moieties as well as the nano- and meso- porous network of the coating allow cycling of Na metal electrodes in symmetric cell configuration for over 2000 h with a stable 4 mV overpotential at 1 mA cm −2 . When tested in full Na || Na 3 V 2 (PO 4 ) 3 coin cell, the coated separator enables the delivery of a stable capacity of about 100 mAh g −1 for 500 cycles (90% capacity retention) at a specific current of 235 mA g −1 and satisfactory rate capability performances (i.e., 75 mAh g −1 at 3.5 A g −1 ). The development of future Na metal batteries relies on the cycling stability of the metallic anode. Here, the authors propose a polypropylene separator functionalized with polydopamine and multilayer graphene to enable stable and prolonged Na metal cell cycling.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-26032-1</identifier><identifier>PMID: 34599165</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/135 ; 147/143 ; 147/3 ; 639/301/299/891 ; 639/4077/4079/891 ; 639/638/675 ; 639/925/357/1018 ; Batteries ; Cell cycle ; Coated electrodes ; Coatings ; Composite materials ; Cycles ; Electrochemistry ; Energy storage ; Graphene ; Humanities and Social Sciences ; Metals ; multidisciplinary ; Multilayers ; Pollutant deposition ; Polypropylene ; Science ; Science (multidisciplinary) ; Separators ; Sodium ; Storage systems</subject><ispartof>Nature communications, 2021-10, Vol.12 (1), p.5786-5786, Article 5786</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3</citedby><cites>FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3</cites><orcidid>0000-0003-1851-4803 ; 0000-0003-3515-0642 ; 0000-0002-7078-2402 ; 0000-0002-3685-7773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2578273062/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2578273062?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Qin, Jieqiong</creatorcontrib><creatorcontrib>Shi, Haodong</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Lu, Pengfei</creatorcontrib><creatorcontrib>Wen, Pengchao</creatorcontrib><creatorcontrib>Xing, Feifei</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Ye, Mao</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Wu, Zhong-Shuai</creatorcontrib><title>Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Sodium metal batteries are considered one of the most promising low-cost high-energy-density electrochemical energy storage systems. However, the growth of unfavourable Na metal deposition and the limited cell cycle life hamper the application of this battery system at a large scale. Here, we propose the use of polypropylene separator coated with a composite material comprising polydopamine and multilayer graphene to tackle these issues. The oxygen- and nitrogen- containing moieties as well as the nano- and meso- porous network of the coating allow cycling of Na metal electrodes in symmetric cell configuration for over 2000 h with a stable 4 mV overpotential at 1 mA cm −2 . When tested in full Na || Na 3 V 2 (PO 4 ) 3 coin cell, the coated separator enables the delivery of a stable capacity of about 100 mAh g −1 for 500 cycles (90% capacity retention) at a specific current of 235 mA g −1 and satisfactory rate capability performances (i.e., 75 mAh g −1 at 3.5 A g −1 ). The development of future Na metal batteries relies on the cycling stability of the metallic anode. Here, the authors propose a polypropylene separator functionalized with polydopamine and multilayer graphene to enable stable and prolonged Na metal cell cycling.</description><subject>147/135</subject><subject>147/143</subject><subject>147/3</subject><subject>639/301/299/891</subject><subject>639/4077/4079/891</subject><subject>639/638/675</subject><subject>639/925/357/1018</subject><subject>Batteries</subject><subject>Cell cycle</subject><subject>Coated electrodes</subject><subject>Coatings</subject><subject>Composite materials</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Multilayers</subject><subject>Pollutant deposition</subject><subject>Polypropylene</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Separators</subject><subject>Sodium</subject><subject>Storage systems</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-AUiQuXUI-_4lyQqoqPShVc4GxNnPFuFicOdnal_fdkNxVQDvhia-aZR9boLYrXwN4BE-YmS5C6rhiHimsmeAXPikvOJFRQc_H8r_dFcZ3zji1HNGCkfFlcCKmaBrS6LH7cum1Ph37clHnGNlD5BcuBZgylO7pwqh96LKcYjl2ccOhHuhn2Ye4DHimVm4TTlkYqXcT5BEdfrvSU4nQMp1amCRPOMb0qXngMma4f76vi-8cP3-4-Vw9fP93f3T5UTkE9V8KT45KR8q0BxaD1mhnvde1aWXcNOjCekDsCqGUjvBeq61SjTA3Ct0DiqrhfvV3EnZ1SP2A62oi9PRdi2lhMc-8CWQOM8UYzpUlJrTsUaFopkbW89i0Ti-v96pr27UCdo3FOGJ5In3bGfms38WCNNHpZ9iJ4-yhI8eee8myHPjsKAUeK-2y5qk2tNQBf0Df_oLu4T-OyqjPFa8H0ieIr5VLMOZH__Rlg9hQNu0bDLtGw52hYWIbEOpQXeNxQ-qP-z9QvAWK76g</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Qin, Jieqiong</creator><creator>Shi, Haodong</creator><creator>Huang, Kai</creator><creator>Lu, Pengfei</creator><creator>Wen, Pengchao</creator><creator>Xing, Feifei</creator><creator>Yang, Bing</creator><creator>Ye, Mao</creator><creator>Yu, Yan</creator><creator>Wu, Zhong-Shuai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1851-4803</orcidid><orcidid>https://orcid.org/0000-0003-3515-0642</orcidid><orcidid>https://orcid.org/0000-0002-7078-2402</orcidid><orcidid>https://orcid.org/0000-0002-3685-7773</orcidid></search><sort><creationdate>20211001</creationdate><title>Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator</title><author>Qin, Jieqiong ; Shi, Haodong ; Huang, Kai ; Lu, Pengfei ; Wen, Pengchao ; Xing, Feifei ; Yang, Bing ; Ye, Mao ; Yu, Yan ; Wu, Zhong-Shuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>147/135</topic><topic>147/143</topic><topic>147/3</topic><topic>639/301/299/891</topic><topic>639/4077/4079/891</topic><topic>639/638/675</topic><topic>639/925/357/1018</topic><topic>Batteries</topic><topic>Cell cycle</topic><topic>Coated electrodes</topic><topic>Coatings</topic><topic>Composite materials</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Multilayers</topic><topic>Pollutant deposition</topic><topic>Polypropylene</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Separators</topic><topic>Sodium</topic><topic>Storage systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Jieqiong</creatorcontrib><creatorcontrib>Shi, Haodong</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Lu, Pengfei</creatorcontrib><creatorcontrib>Wen, Pengchao</creatorcontrib><creatorcontrib>Xing, Feifei</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Ye, Mao</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Wu, Zhong-Shuai</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Jieqiong</au><au>Shi, Haodong</au><au>Huang, Kai</au><au>Lu, Pengfei</au><au>Wen, Pengchao</au><au>Xing, Feifei</au><au>Yang, Bing</au><au>Ye, Mao</au><au>Yu, Yan</au><au>Wu, Zhong-Shuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>5786</spage><epage>5786</epage><pages>5786-5786</pages><artnum>5786</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Sodium metal batteries are considered one of the most promising low-cost high-energy-density electrochemical energy storage systems. However, the growth of unfavourable Na metal deposition and the limited cell cycle life hamper the application of this battery system at a large scale. Here, we propose the use of polypropylene separator coated with a composite material comprising polydopamine and multilayer graphene to tackle these issues. The oxygen- and nitrogen- containing moieties as well as the nano- and meso- porous network of the coating allow cycling of Na metal electrodes in symmetric cell configuration for over 2000 h with a stable 4 mV overpotential at 1 mA cm −2 . When tested in full Na || Na 3 V 2 (PO 4 ) 3 coin cell, the coated separator enables the delivery of a stable capacity of about 100 mAh g −1 for 500 cycles (90% capacity retention) at a specific current of 235 mA g −1 and satisfactory rate capability performances (i.e., 75 mAh g −1 at 3.5 A g −1 ). The development of future Na metal batteries relies on the cycling stability of the metallic anode. Here, the authors propose a polypropylene separator functionalized with polydopamine and multilayer graphene to enable stable and prolonged Na metal cell cycling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34599165</pmid><doi>10.1038/s41467-021-26032-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1851-4803</orcidid><orcidid>https://orcid.org/0000-0003-3515-0642</orcidid><orcidid>https://orcid.org/0000-0002-7078-2402</orcidid><orcidid>https://orcid.org/0000-0002-3685-7773</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-10, Vol.12 (1), p.5786-5786, Article 5786
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8100296056e5466da3a8b44a0b27fb03
source PubMed Central Free; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 147/135
147/143
147/3
639/301/299/891
639/4077/4079/891
639/638/675
639/925/357/1018
Batteries
Cell cycle
Coated electrodes
Coatings
Composite materials
Cycles
Electrochemistry
Energy storage
Graphene
Humanities and Social Sciences
Metals
multidisciplinary
Multilayers
Pollutant deposition
Polypropylene
Science
Science (multidisciplinary)
Separators
Sodium
Storage systems
title Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20stable%20Na%20metal%20cycling%20via%20polydopamine/multilayer%20graphene%20coating%20of%20a%20polypropylene%20separator&rft.jtitle=Nature%20communications&rft.au=Qin,%20Jieqiong&rft.date=2021-10-01&rft.volume=12&rft.issue=1&rft.spage=5786&rft.epage=5786&rft.pages=5786-5786&rft.artnum=5786&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-26032-1&rft_dat=%3Cproquest_doaj_%3E2578273062%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578273062&rft_id=info:pmid/34599165&rfr_iscdi=true