Loading…
Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator
Sodium metal batteries are considered one of the most promising low-cost high-energy-density electrochemical energy storage systems. However, the growth of unfavourable Na metal deposition and the limited cell cycle life hamper the application of this battery system at a large scale. Here, we propos...
Saved in:
Published in: | Nature communications 2021-10, Vol.12 (1), p.5786-5786, Article 5786 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3 |
container_end_page | 5786 |
container_issue | 1 |
container_start_page | 5786 |
container_title | Nature communications |
container_volume | 12 |
creator | Qin, Jieqiong Shi, Haodong Huang, Kai Lu, Pengfei Wen, Pengchao Xing, Feifei Yang, Bing Ye, Mao Yu, Yan Wu, Zhong-Shuai |
description | Sodium metal batteries are considered one of the most promising low-cost high-energy-density electrochemical energy storage systems. However, the growth of unfavourable Na metal deposition and the limited cell cycle life hamper the application of this battery system at a large scale. Here, we propose the use of polypropylene separator coated with a composite material comprising polydopamine and multilayer graphene to tackle these issues. The oxygen- and nitrogen- containing moieties as well as the nano- and meso- porous network of the coating allow cycling of Na metal electrodes in symmetric cell configuration for over 2000 h with a stable 4 mV overpotential at 1 mA cm
−2
. When tested in full Na || Na
3
V
2
(PO
4
)
3
coin cell, the coated separator enables the delivery of a stable capacity of about 100 mAh g
−1
for 500 cycles (90% capacity retention) at a specific current of 235 mA g
−1
and satisfactory rate capability performances (i.e., 75 mAh g
−1
at 3.5 A g
−1
).
The development of future Na metal batteries relies on the cycling stability of the metallic anode. Here, the authors propose a polypropylene separator functionalized with polydopamine and multilayer graphene to enable stable and prolonged Na metal cell cycling. |
doi_str_mv | 10.1038/s41467-021-26032-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8100296056e5466da3a8b44a0b27fb03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8100296056e5466da3a8b44a0b27fb03</doaj_id><sourcerecordid>2578273062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-AUiQuXUI-_4lyQqoqPShVc4GxNnPFuFicOdnal_fdkNxVQDvhia-aZR9boLYrXwN4BE-YmS5C6rhiHimsmeAXPikvOJFRQc_H8r_dFcZ3zji1HNGCkfFlcCKmaBrS6LH7cum1Ph37clHnGNlD5BcuBZgylO7pwqh96LKcYjl2ccOhHuhn2Ye4DHimVm4TTlkYqXcT5BEdfrvSU4nQMp1amCRPOMb0qXngMma4f76vi-8cP3-4-Vw9fP93f3T5UTkE9V8KT45KR8q0BxaD1mhnvde1aWXcNOjCekDsCqGUjvBeq61SjTA3Ct0DiqrhfvV3EnZ1SP2A62oi9PRdi2lhMc-8CWQOM8UYzpUlJrTsUaFopkbW89i0Ti-v96pr27UCdo3FOGJ5In3bGfms38WCNNHpZ9iJ4-yhI8eee8myHPjsKAUeK-2y5qk2tNQBf0Df_oLu4T-OyqjPFa8H0ieIr5VLMOZH__Rlg9hQNu0bDLtGw52hYWIbEOpQXeNxQ-qP-z9QvAWK76g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578273062</pqid></control><display><type>article</type><title>Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Qin, Jieqiong ; Shi, Haodong ; Huang, Kai ; Lu, Pengfei ; Wen, Pengchao ; Xing, Feifei ; Yang, Bing ; Ye, Mao ; Yu, Yan ; Wu, Zhong-Shuai</creator><creatorcontrib>Qin, Jieqiong ; Shi, Haodong ; Huang, Kai ; Lu, Pengfei ; Wen, Pengchao ; Xing, Feifei ; Yang, Bing ; Ye, Mao ; Yu, Yan ; Wu, Zhong-Shuai</creatorcontrib><description>Sodium metal batteries are considered one of the most promising low-cost high-energy-density electrochemical energy storage systems. However, the growth of unfavourable Na metal deposition and the limited cell cycle life hamper the application of this battery system at a large scale. Here, we propose the use of polypropylene separator coated with a composite material comprising polydopamine and multilayer graphene to tackle these issues. The oxygen- and nitrogen- containing moieties as well as the nano- and meso- porous network of the coating allow cycling of Na metal electrodes in symmetric cell configuration for over 2000 h with a stable 4 mV overpotential at 1 mA cm
−2
. When tested in full Na || Na
3
V
2
(PO
4
)
3
coin cell, the coated separator enables the delivery of a stable capacity of about 100 mAh g
−1
for 500 cycles (90% capacity retention) at a specific current of 235 mA g
−1
and satisfactory rate capability performances (i.e., 75 mAh g
−1
at 3.5 A g
−1
).
The development of future Na metal batteries relies on the cycling stability of the metallic anode. Here, the authors propose a polypropylene separator functionalized with polydopamine and multilayer graphene to enable stable and prolonged Na metal cell cycling.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-26032-1</identifier><identifier>PMID: 34599165</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/135 ; 147/143 ; 147/3 ; 639/301/299/891 ; 639/4077/4079/891 ; 639/638/675 ; 639/925/357/1018 ; Batteries ; Cell cycle ; Coated electrodes ; Coatings ; Composite materials ; Cycles ; Electrochemistry ; Energy storage ; Graphene ; Humanities and Social Sciences ; Metals ; multidisciplinary ; Multilayers ; Pollutant deposition ; Polypropylene ; Science ; Science (multidisciplinary) ; Separators ; Sodium ; Storage systems</subject><ispartof>Nature communications, 2021-10, Vol.12 (1), p.5786-5786, Article 5786</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3</citedby><cites>FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3</cites><orcidid>0000-0003-1851-4803 ; 0000-0003-3515-0642 ; 0000-0002-7078-2402 ; 0000-0002-3685-7773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2578273062/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2578273062?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Qin, Jieqiong</creatorcontrib><creatorcontrib>Shi, Haodong</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Lu, Pengfei</creatorcontrib><creatorcontrib>Wen, Pengchao</creatorcontrib><creatorcontrib>Xing, Feifei</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Ye, Mao</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Wu, Zhong-Shuai</creatorcontrib><title>Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Sodium metal batteries are considered one of the most promising low-cost high-energy-density electrochemical energy storage systems. However, the growth of unfavourable Na metal deposition and the limited cell cycle life hamper the application of this battery system at a large scale. Here, we propose the use of polypropylene separator coated with a composite material comprising polydopamine and multilayer graphene to tackle these issues. The oxygen- and nitrogen- containing moieties as well as the nano- and meso- porous network of the coating allow cycling of Na metal electrodes in symmetric cell configuration for over 2000 h with a stable 4 mV overpotential at 1 mA cm
−2
. When tested in full Na || Na
3
V
2
(PO
4
)
3
coin cell, the coated separator enables the delivery of a stable capacity of about 100 mAh g
−1
for 500 cycles (90% capacity retention) at a specific current of 235 mA g
−1
and satisfactory rate capability performances (i.e., 75 mAh g
−1
at 3.5 A g
−1
).
The development of future Na metal batteries relies on the cycling stability of the metallic anode. Here, the authors propose a polypropylene separator functionalized with polydopamine and multilayer graphene to enable stable and prolonged Na metal cell cycling.</description><subject>147/135</subject><subject>147/143</subject><subject>147/3</subject><subject>639/301/299/891</subject><subject>639/4077/4079/891</subject><subject>639/638/675</subject><subject>639/925/357/1018</subject><subject>Batteries</subject><subject>Cell cycle</subject><subject>Coated electrodes</subject><subject>Coatings</subject><subject>Composite materials</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Multilayers</subject><subject>Pollutant deposition</subject><subject>Polypropylene</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Separators</subject><subject>Sodium</subject><subject>Storage systems</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-AUiQuXUI-_4lyQqoqPShVc4GxNnPFuFicOdnal_fdkNxVQDvhia-aZR9boLYrXwN4BE-YmS5C6rhiHimsmeAXPikvOJFRQc_H8r_dFcZ3zji1HNGCkfFlcCKmaBrS6LH7cum1Ph37clHnGNlD5BcuBZgylO7pwqh96LKcYjl2ccOhHuhn2Ye4DHimVm4TTlkYqXcT5BEdfrvSU4nQMp1amCRPOMb0qXngMma4f76vi-8cP3-4-Vw9fP93f3T5UTkE9V8KT45KR8q0BxaD1mhnvde1aWXcNOjCekDsCqGUjvBeq61SjTA3Ct0DiqrhfvV3EnZ1SP2A62oi9PRdi2lhMc-8CWQOM8UYzpUlJrTsUaFopkbW89i0Ti-v96pr27UCdo3FOGJ5In3bGfms38WCNNHpZ9iJ4-yhI8eee8myHPjsKAUeK-2y5qk2tNQBf0Df_oLu4T-OyqjPFa8H0ieIr5VLMOZH__Rlg9hQNu0bDLtGw52hYWIbEOpQXeNxQ-qP-z9QvAWK76g</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Qin, Jieqiong</creator><creator>Shi, Haodong</creator><creator>Huang, Kai</creator><creator>Lu, Pengfei</creator><creator>Wen, Pengchao</creator><creator>Xing, Feifei</creator><creator>Yang, Bing</creator><creator>Ye, Mao</creator><creator>Yu, Yan</creator><creator>Wu, Zhong-Shuai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1851-4803</orcidid><orcidid>https://orcid.org/0000-0003-3515-0642</orcidid><orcidid>https://orcid.org/0000-0002-7078-2402</orcidid><orcidid>https://orcid.org/0000-0002-3685-7773</orcidid></search><sort><creationdate>20211001</creationdate><title>Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator</title><author>Qin, Jieqiong ; Shi, Haodong ; Huang, Kai ; Lu, Pengfei ; Wen, Pengchao ; Xing, Feifei ; Yang, Bing ; Ye, Mao ; Yu, Yan ; Wu, Zhong-Shuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>147/135</topic><topic>147/143</topic><topic>147/3</topic><topic>639/301/299/891</topic><topic>639/4077/4079/891</topic><topic>639/638/675</topic><topic>639/925/357/1018</topic><topic>Batteries</topic><topic>Cell cycle</topic><topic>Coated electrodes</topic><topic>Coatings</topic><topic>Composite materials</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Multilayers</topic><topic>Pollutant deposition</topic><topic>Polypropylene</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Separators</topic><topic>Sodium</topic><topic>Storage systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Jieqiong</creatorcontrib><creatorcontrib>Shi, Haodong</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Lu, Pengfei</creatorcontrib><creatorcontrib>Wen, Pengchao</creatorcontrib><creatorcontrib>Xing, Feifei</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Ye, Mao</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Wu, Zhong-Shuai</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Jieqiong</au><au>Shi, Haodong</au><au>Huang, Kai</au><au>Lu, Pengfei</au><au>Wen, Pengchao</au><au>Xing, Feifei</au><au>Yang, Bing</au><au>Ye, Mao</au><au>Yu, Yan</au><au>Wu, Zhong-Shuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>5786</spage><epage>5786</epage><pages>5786-5786</pages><artnum>5786</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Sodium metal batteries are considered one of the most promising low-cost high-energy-density electrochemical energy storage systems. However, the growth of unfavourable Na metal deposition and the limited cell cycle life hamper the application of this battery system at a large scale. Here, we propose the use of polypropylene separator coated with a composite material comprising polydopamine and multilayer graphene to tackle these issues. The oxygen- and nitrogen- containing moieties as well as the nano- and meso- porous network of the coating allow cycling of Na metal electrodes in symmetric cell configuration for over 2000 h with a stable 4 mV overpotential at 1 mA cm
−2
. When tested in full Na || Na
3
V
2
(PO
4
)
3
coin cell, the coated separator enables the delivery of a stable capacity of about 100 mAh g
−1
for 500 cycles (90% capacity retention) at a specific current of 235 mA g
−1
and satisfactory rate capability performances (i.e., 75 mAh g
−1
at 3.5 A g
−1
).
The development of future Na metal batteries relies on the cycling stability of the metallic anode. Here, the authors propose a polypropylene separator functionalized with polydopamine and multilayer graphene to enable stable and prolonged Na metal cell cycling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34599165</pmid><doi>10.1038/s41467-021-26032-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1851-4803</orcidid><orcidid>https://orcid.org/0000-0003-3515-0642</orcidid><orcidid>https://orcid.org/0000-0002-7078-2402</orcidid><orcidid>https://orcid.org/0000-0002-3685-7773</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-10, Vol.12 (1), p.5786-5786, Article 5786 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8100296056e5466da3a8b44a0b27fb03 |
source | PubMed Central Free; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 147/135 147/143 147/3 639/301/299/891 639/4077/4079/891 639/638/675 639/925/357/1018 Batteries Cell cycle Coated electrodes Coatings Composite materials Cycles Electrochemistry Energy storage Graphene Humanities and Social Sciences Metals multidisciplinary Multilayers Pollutant deposition Polypropylene Science Science (multidisciplinary) Separators Sodium Storage systems |
title | Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20stable%20Na%20metal%20cycling%20via%20polydopamine/multilayer%20graphene%20coating%20of%20a%20polypropylene%20separator&rft.jtitle=Nature%20communications&rft.au=Qin,%20Jieqiong&rft.date=2021-10-01&rft.volume=12&rft.issue=1&rft.spage=5786&rft.epage=5786&rft.pages=5786-5786&rft.artnum=5786&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-26032-1&rft_dat=%3Cproquest_doaj_%3E2578273062%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-3fec240e5fb81501bf608ff67cb47d9ac18fea2ce117493ff35dd5958713fb1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2578273062&rft_id=info:pmid/34599165&rfr_iscdi=true |