Loading…
Folic Acid Self-Assembly Enabling Manganese Single-Atom Electrocatalyst for Selective Nitrogen Reduction to Ammonia
Highlights A manganese single-atom catalyst is developed via a facile folic acid self-assembly strategy. The catalyst exhibits outstanding activity and selectivity for electrochemical reduction of nitrogen to ammonia (NRR). Electrocatalytic mechanism of Mn–N 3 site for NRR is unveiled by a combinati...
Saved in:
Published in: | Nano-micro letters 2021-12, Vol.13 (1), p.125-12, Article 125 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c635t-82d58d6d12b78509883537647aacbb5a5206461b48b18d40d1c13ed43551f2353 |
---|---|
cites | cdi_FETCH-LOGICAL-c635t-82d58d6d12b78509883537647aacbb5a5206461b48b18d40d1c13ed43551f2353 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 125 |
container_title | Nano-micro letters |
container_volume | 13 |
creator | Wang, Xuewan Wu, Dan Liu, Suyun Zhang, Jiujun Fu, Xian-Zhu Luo, Jing-Li |
description | Highlights
A manganese single-atom catalyst is developed via a facile folic acid self-assembly strategy.
The catalyst exhibits outstanding activity and selectivity for electrochemical reduction of nitrogen to ammonia (NRR).
Electrocatalytic mechanism of Mn–N
3
site for NRR is unveiled by a combination of experimental and computational study.
Efficient and robust single-atom catalysts (SACs) based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia (NRR) under ambient conditions. Herein, for the first time, a Mn–N–C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy. The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation. Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix, the catalyst exhibits excellent activity for NRR with high activity and selectivity, achieving a high Faradaic efficiency of 32.02% for ammonia synthesis at − 0.45 V versus reversible hydrogen electrode. Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N
2
adsorption, activation and selective reduction to NH
3
by the distal mechanism. This work provides a simple synthesis process for Mn–N–C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites.
Graphic Abstract |
doi_str_mv | 10.1007/s40820-021-00651-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8118096ad2cd4f8da83110d8224e5b97</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8118096ad2cd4f8da83110d8224e5b97</doaj_id><sourcerecordid>2525242215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635t-82d58d6d12b78509883537647aacbb5a5206461b48b18d40d1c13ed43551f2353</originalsourceid><addsrcrecordid>eNp9kk9vFSEUxSdGY5vaL-DCkLhxM8p_eBuTl-ZVm1RNrK4JA8xIw0CFeU367XtfX63WRcMCuPfwA05O170m-D3BWH1oHGuKe0xJj7EUpCfPukNKBO6FEOQ5rBkhvVRYHnTHrcUBC8oVVYK_7A4YJ0wzxQ67dlpSdGjtokcXIY39urUwD-kGbbIdUswT-mLzZHNoAV3ANoV-vZQZbVJwSy3OLjbdtAWNpe4AUIzXAX2N0JtCRt-D30KpZLQUtJ7nkqN91b0YbWrh-H4-6n6ebn6cfO7Pv306O1mf904ysfSaeqG99IQOSgu80poJpiRX1rphEFZQLLkkA9cD0Z5jTxxhwXMG_x8paI-6sz3XF3tprmqcbb0xxUZzVyh1MrYu0aVgNCEar6T11Hk-am81uIe9ppQHMawUsD7uWVfbYQ7ehbxUmx5BH3dy_GWmcr0jg9srALy7B9TyexvaYubYXEgJrC3bZqjglEmMCQbp2_-kl2VbM1hlqCQroRRY8aRKwOAU0gAqule5WlqrYXx4MsFmFySzD5KBIJm7IBkCh978-9mHI39iAwK2FzRo5SnUv3c_gb0FlpDRaQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525242215</pqid></control><display><type>article</type><title>Folic Acid Self-Assembly Enabling Manganese Single-Atom Electrocatalyst for Selective Nitrogen Reduction to Ammonia</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>PubMed Central</source><creator>Wang, Xuewan ; Wu, Dan ; Liu, Suyun ; Zhang, Jiujun ; Fu, Xian-Zhu ; Luo, Jing-Li</creator><creatorcontrib>Wang, Xuewan ; Wu, Dan ; Liu, Suyun ; Zhang, Jiujun ; Fu, Xian-Zhu ; Luo, Jing-Li</creatorcontrib><description>Highlights
A manganese single-atom catalyst is developed via a facile folic acid self-assembly strategy.
The catalyst exhibits outstanding activity and selectivity for electrochemical reduction of nitrogen to ammonia (NRR).
Electrocatalytic mechanism of Mn–N
3
site for NRR is unveiled by a combination of experimental and computational study.
Efficient and robust single-atom catalysts (SACs) based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia (NRR) under ambient conditions. Herein, for the first time, a Mn–N–C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy. The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation. Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix, the catalyst exhibits excellent activity for NRR with high activity and selectivity, achieving a high Faradaic efficiency of 32.02% for ammonia synthesis at − 0.45 V versus reversible hydrogen electrode. Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N
2
adsorption, activation and selective reduction to NH
3
by the distal mechanism. This work provides a simple synthesis process for Mn–N–C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites.
Graphic Abstract</description><identifier>ISSN: 2311-6706</identifier><identifier>ISSN: 2150-5551</identifier><identifier>EISSN: 2150-5551</identifier><identifier>DOI: 10.1007/s40820-021-00651-1</identifier><identifier>PMID: 34138373</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Ammonia ; Carbon ; Chemical reduction ; Density functional theory ; Electrocatalysis ; Electrocatalysts ; Engineering ; Folic acid ; Folic acid self-assembly ; Manganese ; Manganese single-atom catalyst ; N-doped carbon sheet ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Nitrogen ; Nitrogen reduction ; Selectivity ; Self-assembly ; Single atom catalysts ; Synthesis ; Vitamin B</subject><ispartof>Nano-micro letters, 2021-12, Vol.13 (1), p.125-12, Article 125</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c635t-82d58d6d12b78509883537647aacbb5a5206461b48b18d40d1c13ed43551f2353</citedby><cites>FETCH-LOGICAL-c635t-82d58d6d12b78509883537647aacbb5a5206461b48b18d40d1c13ed43551f2353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113419/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2525242215?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34138373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xuewan</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Liu, Suyun</creatorcontrib><creatorcontrib>Zhang, Jiujun</creatorcontrib><creatorcontrib>Fu, Xian-Zhu</creatorcontrib><creatorcontrib>Luo, Jing-Li</creatorcontrib><title>Folic Acid Self-Assembly Enabling Manganese Single-Atom Electrocatalyst for Selective Nitrogen Reduction to Ammonia</title><title>Nano-micro letters</title><addtitle>Nano-Micro Lett</addtitle><addtitle>Nanomicro Lett</addtitle><description>Highlights
A manganese single-atom catalyst is developed via a facile folic acid self-assembly strategy.
The catalyst exhibits outstanding activity and selectivity for electrochemical reduction of nitrogen to ammonia (NRR).
Electrocatalytic mechanism of Mn–N
3
site for NRR is unveiled by a combination of experimental and computational study.
Efficient and robust single-atom catalysts (SACs) based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia (NRR) under ambient conditions. Herein, for the first time, a Mn–N–C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy. The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation. Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix, the catalyst exhibits excellent activity for NRR with high activity and selectivity, achieving a high Faradaic efficiency of 32.02% for ammonia synthesis at − 0.45 V versus reversible hydrogen electrode. Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N
2
adsorption, activation and selective reduction to NH
3
by the distal mechanism. This work provides a simple synthesis process for Mn–N–C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites.
Graphic Abstract</description><subject>Ammonia</subject><subject>Carbon</subject><subject>Chemical reduction</subject><subject>Density functional theory</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Engineering</subject><subject>Folic acid</subject><subject>Folic acid self-assembly</subject><subject>Manganese</subject><subject>Manganese single-atom catalyst</subject><subject>N-doped carbon sheet</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nitrogen</subject><subject>Nitrogen reduction</subject><subject>Selectivity</subject><subject>Self-assembly</subject><subject>Single atom catalysts</subject><subject>Synthesis</subject><subject>Vitamin B</subject><issn>2311-6706</issn><issn>2150-5551</issn><issn>2150-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9vFSEUxSdGY5vaL-DCkLhxM8p_eBuTl-ZVm1RNrK4JA8xIw0CFeU367XtfX63WRcMCuPfwA05O170m-D3BWH1oHGuKe0xJj7EUpCfPukNKBO6FEOQ5rBkhvVRYHnTHrcUBC8oVVYK_7A4YJ0wzxQ67dlpSdGjtokcXIY39urUwD-kGbbIdUswT-mLzZHNoAV3ANoV-vZQZbVJwSy3OLjbdtAWNpe4AUIzXAX2N0JtCRt-D30KpZLQUtJ7nkqN91b0YbWrh-H4-6n6ebn6cfO7Pv306O1mf904ysfSaeqG99IQOSgu80poJpiRX1rphEFZQLLkkA9cD0Z5jTxxhwXMG_x8paI-6sz3XF3tprmqcbb0xxUZzVyh1MrYu0aVgNCEar6T11Hk-am81uIe9ppQHMawUsD7uWVfbYQ7ehbxUmx5BH3dy_GWmcr0jg9srALy7B9TyexvaYubYXEgJrC3bZqjglEmMCQbp2_-kl2VbM1hlqCQroRRY8aRKwOAU0gAqule5WlqrYXx4MsFmFySzD5KBIJm7IBkCh978-9mHI39iAwK2FzRo5SnUv3c_gb0FlpDRaQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wang, Xuewan</creator><creator>Wu, Dan</creator><creator>Liu, Suyun</creator><creator>Zhang, Jiujun</creator><creator>Fu, Xian-Zhu</creator><creator>Luo, Jing-Li</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211201</creationdate><title>Folic Acid Self-Assembly Enabling Manganese Single-Atom Electrocatalyst for Selective Nitrogen Reduction to Ammonia</title><author>Wang, Xuewan ; Wu, Dan ; Liu, Suyun ; Zhang, Jiujun ; Fu, Xian-Zhu ; Luo, Jing-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635t-82d58d6d12b78509883537647aacbb5a5206461b48b18d40d1c13ed43551f2353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonia</topic><topic>Carbon</topic><topic>Chemical reduction</topic><topic>Density functional theory</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Engineering</topic><topic>Folic acid</topic><topic>Folic acid self-assembly</topic><topic>Manganese</topic><topic>Manganese single-atom catalyst</topic><topic>N-doped carbon sheet</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nitrogen</topic><topic>Nitrogen reduction</topic><topic>Selectivity</topic><topic>Self-assembly</topic><topic>Single atom catalysts</topic><topic>Synthesis</topic><topic>Vitamin B</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuewan</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Liu, Suyun</creatorcontrib><creatorcontrib>Zhang, Jiujun</creatorcontrib><creatorcontrib>Fu, Xian-Zhu</creatorcontrib><creatorcontrib>Luo, Jing-Li</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nano-micro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuewan</au><au>Wu, Dan</au><au>Liu, Suyun</au><au>Zhang, Jiujun</au><au>Fu, Xian-Zhu</au><au>Luo, Jing-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folic Acid Self-Assembly Enabling Manganese Single-Atom Electrocatalyst for Selective Nitrogen Reduction to Ammonia</atitle><jtitle>Nano-micro letters</jtitle><stitle>Nano-Micro Lett</stitle><addtitle>Nanomicro Lett</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>125</spage><epage>12</epage><pages>125-12</pages><artnum>125</artnum><issn>2311-6706</issn><issn>2150-5551</issn><eissn>2150-5551</eissn><abstract>Highlights
A manganese single-atom catalyst is developed via a facile folic acid self-assembly strategy.
The catalyst exhibits outstanding activity and selectivity for electrochemical reduction of nitrogen to ammonia (NRR).
Electrocatalytic mechanism of Mn–N
3
site for NRR is unveiled by a combination of experimental and computational study.
Efficient and robust single-atom catalysts (SACs) based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia (NRR) under ambient conditions. Herein, for the first time, a Mn–N–C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy. The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation. Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix, the catalyst exhibits excellent activity for NRR with high activity and selectivity, achieving a high Faradaic efficiency of 32.02% for ammonia synthesis at − 0.45 V versus reversible hydrogen electrode. Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N
2
adsorption, activation and selective reduction to NH
3
by the distal mechanism. This work provides a simple synthesis process for Mn–N–C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites.
Graphic Abstract</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>34138373</pmid><doi>10.1007/s40820-021-00651-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-6706 |
ispartof | Nano-micro letters, 2021-12, Vol.13 (1), p.125-12, Article 125 |
issn | 2311-6706 2150-5551 2150-5551 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8118096ad2cd4f8da83110d8224e5b97 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access ; PubMed Central |
subjects | Ammonia Carbon Chemical reduction Density functional theory Electrocatalysis Electrocatalysts Engineering Folic acid Folic acid self-assembly Manganese Manganese single-atom catalyst N-doped carbon sheet Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Nitrogen Nitrogen reduction Selectivity Self-assembly Single atom catalysts Synthesis Vitamin B |
title | Folic Acid Self-Assembly Enabling Manganese Single-Atom Electrocatalyst for Selective Nitrogen Reduction to Ammonia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folic%20Acid%20Self-Assembly%20Enabling%20Manganese%20Single-Atom%20Electrocatalyst%20for%20Selective%20Nitrogen%20Reduction%20to%20Ammonia&rft.jtitle=Nano-micro%20letters&rft.au=Wang,%20Xuewan&rft.date=2021-12-01&rft.volume=13&rft.issue=1&rft.spage=125&rft.epage=12&rft.pages=125-12&rft.artnum=125&rft.issn=2311-6706&rft.eissn=2150-5551&rft_id=info:doi/10.1007/s40820-021-00651-1&rft_dat=%3Cproquest_doaj_%3E2525242215%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c635t-82d58d6d12b78509883537647aacbb5a5206461b48b18d40d1c13ed43551f2353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2525242215&rft_id=info:pmid/34138373&rfr_iscdi=true |