Loading…
Incandescent temporal metamaterials
Regarded as a promising alternative to spatially shaping matter, time-varying media can be seized to control and manipulate wave phenomena, including thermal radiation. Here, based upon the framework of macroscopic quantum electrodynamics, we elaborate a comprehensive quantum theoretical formulation...
Saved in:
Published in: | Nature communications 2023-08, Vol.14 (1), p.4606-4606, Article 4606 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Regarded as a promising alternative to spatially shaping matter, time-varying media can be seized to control and manipulate wave phenomena, including thermal radiation. Here, based upon the framework of macroscopic quantum electrodynamics, we elaborate a comprehensive quantum theoretical formulation that lies the basis for investigating thermal emission effects in time-modulated media. Our theory unveils unique physical features brought about by time-varying media: nontrivial correlations between fluctuating electromagnetic currents at different frequencies and positions, thermal radiation overcoming the black-body spectrum, and quantum vacuum amplification effects at finite temperature. We illustrate how these features lead to striking phenomena and innovative thermal emitters, specifically, showing that the time-modulation releases strong field fluctuations confined within epsilon-near-zero (ENZ) bodies, and that, in turn, it enables a narrowband (partially coherent) emission spanning the whole range of wavevectors, from near to far-field regimes.
Here the authors employ quantum electrodynamics to formulate thermal emission effects in time-modulated media, resulting in innovative thermal emitters. They show that time modulation induces strong field fluctuations in epsilon-near-zero bodies, enabling narrowband emission across the entire range of wavevectors, from near to far-field regimes. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-40281-2 |