Loading…

Accuracy of Using Generative Adversarial Networks for Glaucoma Detection: Systematic Review and Bibliometric Analysis

Background: Glaucoma leads to irreversible blindness. Globally, it is the second most common retinal disease that leads to blindness, slightly less common than cataracts. Therefore, there is a great need to avoid the silent growth of this disease using recently developed generative adversarial netwo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical Internet research 2021-09, Vol.23 (9), p.e27414-e27414
Main Authors: Saeed, Ali Q, Sheikh Abdullah, Siti Norul Huda, Che-Hamzah, Jemaima, Abdul Ghani, Ahmad Tarmizi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Glaucoma leads to irreversible blindness. Globally, it is the second most common retinal disease that leads to blindness, slightly less common than cataracts. Therefore, there is a great need to avoid the silent growth of this disease using recently developed generative adversarial networks (GANs). Objective: This paper aims to introduce a GAN technology for the diagnosis of eye disorders, particularly glaucoma. This paper illustrates deep adversarial learning as a potential diagnostic tool and the challenges involved in its implementation. This study describes and analyzes many of the pitfalls and problems that researchers will need to overcome to implement this kind of technology. Methods: To organize this review comprehensively, articles and reviews were collected using the following keywords: (“Glaucoma,” “optic disc,” “blood vessels”) and (“receptive field,” “loss function,” “GAN,” “Generative Adversarial Network,” “Deep learning,” “CNN,” “convolutional neural network” OR encoder). The records were identified from 5 highly reputed databases: IEEE Xplore, Web of Science, Scopus, ScienceDirect, and PubMed. These libraries broadly cover the technical and medical literature. Publications within the last 5 years, specifically 2015-2020, were included because the target GAN technique was invented only in 2014 and the publishing date of the collected papers was not earlier than 2016. Duplicate records were removed, and irrelevant titles and abstracts were excluded. In addition, we excluded papers that used optical coherence tomography and visual field images, except for those with 2D images. A large-scale systematic analysis was performed, and then a summarized taxonomy was generated. Furthermore, the results of the collected articles were summarized and a visual representation of the results was presented on a T-shaped matrix diagram. This study was conducted between March 2020 and November 2020. Results: We found 59 articles after conducting a comprehensive survey of the literature. Among the 59 articles, 30 present actual attempts to synthesize images and provide accurate segmentation/classification using single/multiple landmarks or share certain experiences. The other 29 articles discuss the recent advances in GANs, do practical experiments, and contain analytical studies of retinal disease. Conclusions: Recent deep learning techniques, namely GANs, have shown encouraging performance in retinal disease detection. Although this methodology in
ISSN:1438-8871
1439-4456
1438-8871
DOI:10.2196/27414