Loading…

Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data

This paper evaluates the results of benchmark testing a new inertial formulation of the St. Venant equations, implemented within the LISFLOOD-FP hydraulic model, using different high resolution terrestrial LiDAR data (10 cm, 50 cm and 1 m) and roughness conditions (distributed and composite) in an u...

Full description

Saved in:
Bibliographic Details
Published in:Hydrology and earth system sciences 2013-10, Vol.17 (10), p.4015-4030
Main Authors: Ozdemir, H, Sampson, C. C, de Almeida, G. A. M, Bates, P. D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c549t-60b35b45952a4620e03614e0ada4675779a938e9590a1c8c250a52d42e03d23c3
cites cdi_FETCH-LOGICAL-c549t-60b35b45952a4620e03614e0ada4675779a938e9590a1c8c250a52d42e03d23c3
container_end_page 4030
container_issue 10
container_start_page 4015
container_title Hydrology and earth system sciences
container_volume 17
creator Ozdemir, H
Sampson, C. C
de Almeida, G. A. M
Bates, P. D
description This paper evaluates the results of benchmark testing a new inertial formulation of the St. Venant equations, implemented within the LISFLOOD-FP hydraulic model, using different high resolution terrestrial LiDAR data (10 cm, 50 cm and 1 m) and roughness conditions (distributed and composite) in an urban area. To examine these effects, the model is applied to a hypothetical flooding scenario in Alcester, UK, which experienced surface water flooding during summer 2007. The sensitivities of simulated water depth, extent, arrival time and velocity to grid resolutions and different roughness conditions are analysed. The results indicate that increasing the terrain resolution from 1 m to 10 cm significantly affects modelled water depth, extent, arrival time and velocity. This is because hydraulically relevant small scale topography that is accurately captured by the terrestrial LIDAR system, such as road cambers and street kerbs, is better represented on the higher resolution DEM. It is shown that altering surface friction values within a wide range has only a limited effect and is not sufficient to recover the results of the 10 cm simulation at 1 m resolution. Alternating between a uniform composite surface friction value (n = 0.013) or a variable distributed value based on land use has a greater effect on flow velocities and arrival times than on water depths and inundation extent. We conclude that the use of extra detail inherent in terrestrial laser scanning data compared to airborne sensors will be advantageous for urban flood modelling related to surface water, risk analysis and planning for Sustainable Urban Drainage Systems (SUDS) to attenuate flow.
doi_str_mv 10.5194/hess-17-4015-2013
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_814ebf4d25e2488ca04baa9797c77933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481465147</galeid><doaj_id>oai_doaj_org_article_814ebf4d25e2488ca04baa9797c77933</doaj_id><sourcerecordid>A481465147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-60b35b45952a4620e03614e0ada4675779a938e9590a1c8c250a52d42e03d23c3</originalsourceid><addsrcrecordid>eNqFkk2LFDEQhhtRcF39Ad4CXvTQaz47yXFY13VgQFj1JoTqJN2boaezJmnRf79pR9QRQQL54qk3VZW3aZ4TfCGI5q9vfc4tkS3HRLQUE_agOSMdlq3UTD38Y_-4eZLzHmOqVEfPms9XX2FaoIR5RNnC5BHMDqW4jLdzlUR-GLwtGYUZLamHGQ1TjA4dovPTtAYteZ2LT8nnkgJMaLd9s7lBDgo8bR4NMGX_7Od63nx6e_Xx8l27e3-9vdzsWiu4Lm2HeyZ6LrSgwDuKPWYd4R6Dq0cppNRQE_daaAzEKksFBkEdpxV0lFl23myPui7C3tylcID03UQI5sdFTKOBVIKdvFFVuB-4o8JTrpQFzHsALbW09R3GqtbLo9Zdil-WWpM5hGxrsTD7uGRDpOpIxwjn_0d5xwXhiqmKvvgL3cclzbUpleKaSawJ-U2N9SNMmIdYEthV1Gx4zbyrarJSF_-g6nD-EGyc_RDq_UnAq5OAyhT_rYyw5Gy2H25OWXJkbYo5Jz_8aifBZnWaWZ1Wu2BWp5nVaewepfvCGw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449370911</pqid></control><display><type>article</type><title>Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><creator>Ozdemir, H ; Sampson, C. C ; de Almeida, G. A. M ; Bates, P. D</creator><creatorcontrib>Ozdemir, H ; Sampson, C. C ; de Almeida, G. A. M ; Bates, P. D</creatorcontrib><description>This paper evaluates the results of benchmark testing a new inertial formulation of the St. Venant equations, implemented within the LISFLOOD-FP hydraulic model, using different high resolution terrestrial LiDAR data (10 cm, 50 cm and 1 m) and roughness conditions (distributed and composite) in an urban area. To examine these effects, the model is applied to a hypothetical flooding scenario in Alcester, UK, which experienced surface water flooding during summer 2007. The sensitivities of simulated water depth, extent, arrival time and velocity to grid resolutions and different roughness conditions are analysed. The results indicate that increasing the terrain resolution from 1 m to 10 cm significantly affects modelled water depth, extent, arrival time and velocity. This is because hydraulically relevant small scale topography that is accurately captured by the terrestrial LIDAR system, such as road cambers and street kerbs, is better represented on the higher resolution DEM. It is shown that altering surface friction values within a wide range has only a limited effect and is not sufficient to recover the results of the 10 cm simulation at 1 m resolution. Alternating between a uniform composite surface friction value (n = 0.013) or a variable distributed value based on land use has a greater effect on flow velocities and arrival times than on water depths and inundation extent. We conclude that the use of extra detail inherent in terrestrial laser scanning data compared to airborne sensors will be advantageous for urban flood modelling related to surface water, risk analysis and planning for Sustainable Urban Drainage Systems (SUDS) to attenuate flow.</description><identifier>ISSN: 1607-7938</identifier><identifier>ISSN: 1027-5606</identifier><identifier>EISSN: 1607-7938</identifier><identifier>DOI: 10.5194/hess-17-4015-2013</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Analysis ; Arrivals ; Floods ; Lidar ; Mathematical models ; Modelling ; Optical radar ; Remote sensing ; Roughness ; Sustainable urban development ; Water depth</subject><ispartof>Hydrology and earth system sciences, 2013-10, Vol.17 (10), p.4015-4030</ispartof><rights>COPYRIGHT 2013 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-60b35b45952a4620e03614e0ada4675779a938e9590a1c8c250a52d42e03d23c3</citedby><cites>FETCH-LOGICAL-c549t-60b35b45952a4620e03614e0ada4675779a938e9590a1c8c250a52d42e03d23c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1449370911/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1449370911?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Ozdemir, H</creatorcontrib><creatorcontrib>Sampson, C. C</creatorcontrib><creatorcontrib>de Almeida, G. A. M</creatorcontrib><creatorcontrib>Bates, P. D</creatorcontrib><title>Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data</title><title>Hydrology and earth system sciences</title><description>This paper evaluates the results of benchmark testing a new inertial formulation of the St. Venant equations, implemented within the LISFLOOD-FP hydraulic model, using different high resolution terrestrial LiDAR data (10 cm, 50 cm and 1 m) and roughness conditions (distributed and composite) in an urban area. To examine these effects, the model is applied to a hypothetical flooding scenario in Alcester, UK, which experienced surface water flooding during summer 2007. The sensitivities of simulated water depth, extent, arrival time and velocity to grid resolutions and different roughness conditions are analysed. The results indicate that increasing the terrain resolution from 1 m to 10 cm significantly affects modelled water depth, extent, arrival time and velocity. This is because hydraulically relevant small scale topography that is accurately captured by the terrestrial LIDAR system, such as road cambers and street kerbs, is better represented on the higher resolution DEM. It is shown that altering surface friction values within a wide range has only a limited effect and is not sufficient to recover the results of the 10 cm simulation at 1 m resolution. Alternating between a uniform composite surface friction value (n = 0.013) or a variable distributed value based on land use has a greater effect on flow velocities and arrival times than on water depths and inundation extent. We conclude that the use of extra detail inherent in terrestrial laser scanning data compared to airborne sensors will be advantageous for urban flood modelling related to surface water, risk analysis and planning for Sustainable Urban Drainage Systems (SUDS) to attenuate flow.</description><subject>Analysis</subject><subject>Arrivals</subject><subject>Floods</subject><subject>Lidar</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Optical radar</subject><subject>Remote sensing</subject><subject>Roughness</subject><subject>Sustainable urban development</subject><subject>Water depth</subject><issn>1607-7938</issn><issn>1027-5606</issn><issn>1607-7938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk2LFDEQhhtRcF39Ad4CXvTQaz47yXFY13VgQFj1JoTqJN2boaezJmnRf79pR9QRQQL54qk3VZW3aZ4TfCGI5q9vfc4tkS3HRLQUE_agOSMdlq3UTD38Y_-4eZLzHmOqVEfPms9XX2FaoIR5RNnC5BHMDqW4jLdzlUR-GLwtGYUZLamHGQ1TjA4dovPTtAYteZ2LT8nnkgJMaLd9s7lBDgo8bR4NMGX_7Od63nx6e_Xx8l27e3-9vdzsWiu4Lm2HeyZ6LrSgwDuKPWYd4R6Dq0cppNRQE_daaAzEKksFBkEdpxV0lFl23myPui7C3tylcID03UQI5sdFTKOBVIKdvFFVuB-4o8JTrpQFzHsALbW09R3GqtbLo9Zdil-WWpM5hGxrsTD7uGRDpOpIxwjn_0d5xwXhiqmKvvgL3cclzbUpleKaSawJ-U2N9SNMmIdYEthV1Gx4zbyrarJSF_-g6nD-EGyc_RDq_UnAq5OAyhT_rYyw5Gy2H25OWXJkbYo5Jz_8aifBZnWaWZ1Wu2BWp5nVaewepfvCGw</recordid><startdate>20131017</startdate><enddate>20131017</enddate><creator>Ozdemir, H</creator><creator>Sampson, C. C</creator><creator>de Almeida, G. A. M</creator><creator>Bates, P. D</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>7ST</scope><scope>7U1</scope><scope>7U2</scope><scope>7U6</scope><scope>SOI</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20131017</creationdate><title>Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data</title><author>Ozdemir, H ; Sampson, C. C ; de Almeida, G. A. M ; Bates, P. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-60b35b45952a4620e03614e0ada4675779a938e9590a1c8c250a52d42e03d23c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Arrivals</topic><topic>Floods</topic><topic>Lidar</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Optical radar</topic><topic>Remote sensing</topic><topic>Roughness</topic><topic>Sustainable urban development</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozdemir, H</creatorcontrib><creatorcontrib>Sampson, C. C</creatorcontrib><creatorcontrib>de Almeida, G. A. M</creatorcontrib><creatorcontrib>Bates, P. D</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Hydrology and earth system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozdemir, H</au><au>Sampson, C. C</au><au>de Almeida, G. A. M</au><au>Bates, P. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data</atitle><jtitle>Hydrology and earth system sciences</jtitle><date>2013-10-17</date><risdate>2013</risdate><volume>17</volume><issue>10</issue><spage>4015</spage><epage>4030</epage><pages>4015-4030</pages><issn>1607-7938</issn><issn>1027-5606</issn><eissn>1607-7938</eissn><abstract>This paper evaluates the results of benchmark testing a new inertial formulation of the St. Venant equations, implemented within the LISFLOOD-FP hydraulic model, using different high resolution terrestrial LiDAR data (10 cm, 50 cm and 1 m) and roughness conditions (distributed and composite) in an urban area. To examine these effects, the model is applied to a hypothetical flooding scenario in Alcester, UK, which experienced surface water flooding during summer 2007. The sensitivities of simulated water depth, extent, arrival time and velocity to grid resolutions and different roughness conditions are analysed. The results indicate that increasing the terrain resolution from 1 m to 10 cm significantly affects modelled water depth, extent, arrival time and velocity. This is because hydraulically relevant small scale topography that is accurately captured by the terrestrial LIDAR system, such as road cambers and street kerbs, is better represented on the higher resolution DEM. It is shown that altering surface friction values within a wide range has only a limited effect and is not sufficient to recover the results of the 10 cm simulation at 1 m resolution. Alternating between a uniform composite surface friction value (n = 0.013) or a variable distributed value based on land use has a greater effect on flow velocities and arrival times than on water depths and inundation extent. We conclude that the use of extra detail inherent in terrestrial laser scanning data compared to airborne sensors will be advantageous for urban flood modelling related to surface water, risk analysis and planning for Sustainable Urban Drainage Systems (SUDS) to attenuate flow.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/hess-17-4015-2013</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1607-7938
ispartof Hydrology and earth system sciences, 2013-10, Vol.17 (10), p.4015-4030
issn 1607-7938
1027-5606
1607-7938
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_814ebf4d25e2488ca04baa9797c77933
source Publicly Available Content Database; DOAJ Directory of Open Access Journals
subjects Analysis
Arrivals
Floods
Lidar
Mathematical models
Modelling
Optical radar
Remote sensing
Roughness
Sustainable urban development
Water depth
title Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20scale%20and%20roughness%20effects%20in%20urban%20flood%20modelling%20using%20terrestrial%20LIDAR%20data&rft.jtitle=Hydrology%20and%20earth%20system%20sciences&rft.au=Ozdemir,%20H&rft.date=2013-10-17&rft.volume=17&rft.issue=10&rft.spage=4015&rft.epage=4030&rft.pages=4015-4030&rft.issn=1607-7938&rft.eissn=1607-7938&rft_id=info:doi/10.5194/hess-17-4015-2013&rft_dat=%3Cgale_doaj_%3EA481465147%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-60b35b45952a4620e03614e0ada4675779a938e9590a1c8c250a52d42e03d23c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1449370911&rft_id=info:pmid/&rft_galeid=A481465147&rfr_iscdi=true