Loading…
Multi-Innovation Stochastic Gradient Identification Algorithm for Hammerstein Controlled Autoregressive Autoregressive Systems Based on the Key Term Separation Principle and on the Model Decomposition
An input nonlinear system is decomposed into two subsystems, one including the parameters of the system model and the other including the parameters of the noise model, and a multi-innovation stochastic gradient algorithm is presented for Hammerstein controlled autoregressive autoregressive (H-CARAR...
Saved in:
Published in: | Journal of Applied Mathematics 2013-01, Vol.2013 (2013), p.939-945-498 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An input nonlinear system is decomposed into two subsystems, one including the parameters of the system model and the other including the parameters of the noise model, and a multi-innovation stochastic gradient algorithm is presented for Hammerstein controlled autoregressive autoregressive (H-CARAR) systems based on the key term separation principle and on the model decomposition, in order to improve the convergence speed of the stochastic gradient algorithm. The key term separation principle can simplify the identification model of the input nonlinear system, and the decomposition technique can enhance computational efficiencies of identification algorithms. The simulation results show that the proposed algorithm is effective for estimating the parameters of IN-CARAR systems. |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2013/596141 |