Loading…
Status of the design of the ITER ECE diagnostic
The baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. B...
Saved in:
Published in: | EPJ Web of conferences 2015-01, Vol.87, p.3002-1-03002-7 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-c0005fefdfcc1dce75c2e30e37856f9ec7ec3ade9a4d6cc7c948e80135496e1e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-c0005fefdfcc1dce75c2e30e37856f9ec7ec3ade9a4d6cc7c948e80135496e1e3 |
container_end_page | 1-03002-7 |
container_issue | |
container_start_page | 3002 |
container_title | EPJ Web of conferences |
container_volume | 87 |
creator | Taylor, G. Austin, M. E. Beno, J. H. Danani, S. Ellis, R. F. Feder, R. Hesler, J. L. Hubbard, A. E. Johnson, D. W. Kumar, R. Kumar, S. Kumar, V. Ouroua, A. Pandya, H. K. B. Phillips, P. E. Roman, C. Rowan, W. L. Udintsev, V. Vayakis, G. Walsh, M. |
description | The baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation in the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system. |
doi_str_mv | 10.1051/epjconf/20158703002 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8163548fa66d423fba3adb9863d291ad</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8163548fa66d423fba3adb9863d291ad</doaj_id><sourcerecordid>1793237280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-c0005fefdfcc1dce75c2e30e37856f9ec7ec3ade9a4d6cc7c948e80135496e1e3</originalsourceid><addsrcrecordid>eNpdkctKAzEUhgdRsFSfwM2gGze1uU0uSylVCwVBK7gL8eSkTqmTOplZ-Pamtkoxm1z48iXn_EVxQckNJRUd42YFsQljRmilFeGEsKNiwCghI0LF6_HB-rQ4T2lF8uDG8EoOivFz57o-lTGU3TuWHlO9bH53s8X0qZxOpqWv3bKJqavhrDgJbp3wfD8Pi5e76WLyMJo_3s8mt_MRCKG7EeQnqoDBBwDqAVUFDDlBrnQlg0FQCNx5NE54CaDACI2aUF4JI5EiHxaznddHt7Kbtv5w7ZeNrrY_B7FdWtfm_6zRairzNR2clF4wHt5cNr8ZLblnhjqfXZc717YCm6DuEN5zyxqEzlIqtNYmQ9c7aNPGzx5TZz_qBLheuwZjnyxVhjOumCYZvfqHrmLfNrkdmZJMUS3UVsh3FLQxpRbDXxWU2G1wdh-cPQiOfwMfPYn_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762718479</pqid></control><display><type>article</type><title>Status of the design of the ITER ECE diagnostic</title><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Taylor, G. ; Austin, M. E. ; Beno, J. H. ; Danani, S. ; Ellis, R. F. ; Feder, R. ; Hesler, J. L. ; Hubbard, A. E. ; Johnson, D. W. ; Kumar, R. ; Kumar, S. ; Kumar, V. ; Ouroua, A. ; Pandya, H. K. B. ; Phillips, P. E. ; Roman, C. ; Rowan, W. L. ; Udintsev, V. ; Vayakis, G. ; Walsh, M.</creator><contributor>Kubo, S.</contributor><creatorcontrib>Taylor, G. ; Austin, M. E. ; Beno, J. H. ; Danani, S. ; Ellis, R. F. ; Feder, R. ; Hesler, J. L. ; Hubbard, A. E. ; Johnson, D. W. ; Kumar, R. ; Kumar, S. ; Kumar, V. ; Ouroua, A. ; Pandya, H. K. B. ; Phillips, P. E. ; Roman, C. ; Rowan, W. L. ; Udintsev, V. ; Vayakis, G. ; Walsh, M. ; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States) ; Kubo, S.</creatorcontrib><description>The baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation in the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system.</description><identifier>ISSN: 2100-014X</identifier><identifier>ISSN: 2101-6275</identifier><identifier>EISSN: 2100-014X</identifier><identifier>DOI: 10.1051/epjconf/20158703002</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Broadband ; Calibration ; Couplings ; Cyclotrons ; Design engineering ; Diagnostic systems ; Electron energy ; Emission ; Halls ; Instrumentation ; Instruments ; Interferometers ; Michelson interferometers ; Millimeter waves ; Product design ; Radiation damage ; Shutters ; Spatial resolution ; Temperature profiles</subject><ispartof>EPJ Web of conferences, 2015-01, Vol.87, p.3002-1-03002-7</ispartof><rights>2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-c0005fefdfcc1dce75c2e30e37856f9ec7ec3ade9a4d6cc7c948e80135496e1e3</citedby><cites>FETCH-LOGICAL-c448t-c0005fefdfcc1dce75c2e30e37856f9ec7ec3ade9a4d6cc7c948e80135496e1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1762718479?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,25753,27924,27925,37012,37013,44590</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1148889$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Kubo, S.</contributor><creatorcontrib>Taylor, G.</creatorcontrib><creatorcontrib>Austin, M. E.</creatorcontrib><creatorcontrib>Beno, J. H.</creatorcontrib><creatorcontrib>Danani, S.</creatorcontrib><creatorcontrib>Ellis, R. F.</creatorcontrib><creatorcontrib>Feder, R.</creatorcontrib><creatorcontrib>Hesler, J. L.</creatorcontrib><creatorcontrib>Hubbard, A. E.</creatorcontrib><creatorcontrib>Johnson, D. W.</creatorcontrib><creatorcontrib>Kumar, R.</creatorcontrib><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Kumar, V.</creatorcontrib><creatorcontrib>Ouroua, A.</creatorcontrib><creatorcontrib>Pandya, H. K. B.</creatorcontrib><creatorcontrib>Phillips, P. E.</creatorcontrib><creatorcontrib>Roman, C.</creatorcontrib><creatorcontrib>Rowan, W. L.</creatorcontrib><creatorcontrib>Udintsev, V.</creatorcontrib><creatorcontrib>Vayakis, G.</creatorcontrib><creatorcontrib>Walsh, M.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><title>Status of the design of the ITER ECE diagnostic</title><title>EPJ Web of conferences</title><description>The baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation in the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Broadband</subject><subject>Calibration</subject><subject>Couplings</subject><subject>Cyclotrons</subject><subject>Design engineering</subject><subject>Diagnostic systems</subject><subject>Electron energy</subject><subject>Emission</subject><subject>Halls</subject><subject>Instrumentation</subject><subject>Instruments</subject><subject>Interferometers</subject><subject>Michelson interferometers</subject><subject>Millimeter waves</subject><subject>Product design</subject><subject>Radiation damage</subject><subject>Shutters</subject><subject>Spatial resolution</subject><subject>Temperature profiles</subject><issn>2100-014X</issn><issn>2101-6275</issn><issn>2100-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkctKAzEUhgdRsFSfwM2gGze1uU0uSylVCwVBK7gL8eSkTqmTOplZ-Pamtkoxm1z48iXn_EVxQckNJRUd42YFsQljRmilFeGEsKNiwCghI0LF6_HB-rQ4T2lF8uDG8EoOivFz57o-lTGU3TuWHlO9bH53s8X0qZxOpqWv3bKJqavhrDgJbp3wfD8Pi5e76WLyMJo_3s8mt_MRCKG7EeQnqoDBBwDqAVUFDDlBrnQlg0FQCNx5NE54CaDACI2aUF4JI5EiHxaznddHt7Kbtv5w7ZeNrrY_B7FdWtfm_6zRairzNR2clF4wHt5cNr8ZLblnhjqfXZc717YCm6DuEN5zyxqEzlIqtNYmQ9c7aNPGzx5TZz_qBLheuwZjnyxVhjOumCYZvfqHrmLfNrkdmZJMUS3UVsh3FLQxpRbDXxWU2G1wdh-cPQiOfwMfPYn_</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Taylor, G.</creator><creator>Austin, M. E.</creator><creator>Beno, J. H.</creator><creator>Danani, S.</creator><creator>Ellis, R. F.</creator><creator>Feder, R.</creator><creator>Hesler, J. L.</creator><creator>Hubbard, A. E.</creator><creator>Johnson, D. W.</creator><creator>Kumar, R.</creator><creator>Kumar, S.</creator><creator>Kumar, V.</creator><creator>Ouroua, A.</creator><creator>Pandya, H. K. B.</creator><creator>Phillips, P. E.</creator><creator>Roman, C.</creator><creator>Rowan, W. L.</creator><creator>Udintsev, V.</creator><creator>Vayakis, G.</creator><creator>Walsh, M.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20150101</creationdate><title>Status of the design of the ITER ECE diagnostic</title><author>Taylor, G. ; Austin, M. E. ; Beno, J. H. ; Danani, S. ; Ellis, R. F. ; Feder, R. ; Hesler, J. L. ; Hubbard, A. E. ; Johnson, D. W. ; Kumar, R. ; Kumar, S. ; Kumar, V. ; Ouroua, A. ; Pandya, H. K. B. ; Phillips, P. E. ; Roman, C. ; Rowan, W. L. ; Udintsev, V. ; Vayakis, G. ; Walsh, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-c0005fefdfcc1dce75c2e30e37856f9ec7ec3ade9a4d6cc7c948e80135496e1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Broadband</topic><topic>Calibration</topic><topic>Couplings</topic><topic>Cyclotrons</topic><topic>Design engineering</topic><topic>Diagnostic systems</topic><topic>Electron energy</topic><topic>Emission</topic><topic>Halls</topic><topic>Instrumentation</topic><topic>Instruments</topic><topic>Interferometers</topic><topic>Michelson interferometers</topic><topic>Millimeter waves</topic><topic>Product design</topic><topic>Radiation damage</topic><topic>Shutters</topic><topic>Spatial resolution</topic><topic>Temperature profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, G.</creatorcontrib><creatorcontrib>Austin, M. E.</creatorcontrib><creatorcontrib>Beno, J. H.</creatorcontrib><creatorcontrib>Danani, S.</creatorcontrib><creatorcontrib>Ellis, R. F.</creatorcontrib><creatorcontrib>Feder, R.</creatorcontrib><creatorcontrib>Hesler, J. L.</creatorcontrib><creatorcontrib>Hubbard, A. E.</creatorcontrib><creatorcontrib>Johnson, D. W.</creatorcontrib><creatorcontrib>Kumar, R.</creatorcontrib><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Kumar, V.</creatorcontrib><creatorcontrib>Ouroua, A.</creatorcontrib><creatorcontrib>Pandya, H. K. B.</creatorcontrib><creatorcontrib>Phillips, P. E.</creatorcontrib><creatorcontrib>Roman, C.</creatorcontrib><creatorcontrib>Rowan, W. L.</creatorcontrib><creatorcontrib>Udintsev, V.</creatorcontrib><creatorcontrib>Vayakis, G.</creatorcontrib><creatorcontrib>Walsh, M.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EPJ Web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, G.</au><au>Austin, M. E.</au><au>Beno, J. H.</au><au>Danani, S.</au><au>Ellis, R. F.</au><au>Feder, R.</au><au>Hesler, J. L.</au><au>Hubbard, A. E.</au><au>Johnson, D. W.</au><au>Kumar, R.</au><au>Kumar, S.</au><au>Kumar, V.</au><au>Ouroua, A.</au><au>Pandya, H. K. B.</au><au>Phillips, P. E.</au><au>Roman, C.</au><au>Rowan, W. L.</au><au>Udintsev, V.</au><au>Vayakis, G.</au><au>Walsh, M.</au><au>Kubo, S.</au><aucorp>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Status of the design of the ITER ECE diagnostic</atitle><jtitle>EPJ Web of conferences</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>87</volume><spage>3002</spage><epage>1-03002-7</epage><pages>3002-1-03002-7</pages><issn>2100-014X</issn><issn>2101-6275</issn><eissn>2100-014X</eissn><abstract>The baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation in the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/epjconf/20158703002</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2100-014X |
ispartof | EPJ Web of conferences, 2015-01, Vol.87, p.3002-1-03002-7 |
issn | 2100-014X 2101-6275 2100-014X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8163548fa66d423fba3adb9863d291ad |
source | Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Broadband Calibration Couplings Cyclotrons Design engineering Diagnostic systems Electron energy Emission Halls Instrumentation Instruments Interferometers Michelson interferometers Millimeter waves Product design Radiation damage Shutters Spatial resolution Temperature profiles |
title | Status of the design of the ITER ECE diagnostic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Status%20of%20the%20design%20of%20the%20ITER%20ECE%20diagnostic&rft.jtitle=EPJ%20Web%20of%20conferences&rft.au=Taylor,%20G.&rft.aucorp=Princeton%20Plasma%20Physics%20Lab.%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2015-01-01&rft.volume=87&rft.spage=3002&rft.epage=1-03002-7&rft.pages=3002-1-03002-7&rft.issn=2100-014X&rft.eissn=2100-014X&rft_id=info:doi/10.1051/epjconf/20158703002&rft_dat=%3Cproquest_doaj_%3E1793237280%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-c0005fefdfcc1dce75c2e30e37856f9ec7ec3ade9a4d6cc7c948e80135496e1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762718479&rft_id=info:pmid/&rfr_iscdi=true |