Loading…
Probabilistic forecasting of wind power production losses in cold climates: a case study
The problem of icing on wind turbines in cold climates is addressed using probabilistic forecasting to improve next-day forecasts of icing and related production losses. A case study of probabilistic forecasts was generated for a 2-week period. Uncertainties in initial and boundary conditions are re...
Saved in:
Published in: | Wind Energy Science 2018, Vol.3 (2), p.667-680 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-bb86ceb197ee5987efff3ea70b62691a5323857c8aa2e2a05df1d7bd9122ff393 |
---|---|
cites | |
container_end_page | 680 |
container_issue | 2 |
container_start_page | 667 |
container_title | Wind Energy Science |
container_volume | 3 |
creator | Molinder, Jennie Körnich, Heiner Olsson, Esbjörn Bergström, Hans Sjöblom, Anna |
description | The problem of icing on wind turbines in cold climates is addressed using probabilistic forecasting to improve next-day forecasts of icing and related production losses. A case study of probabilistic forecasts was generated for a 2-week period. Uncertainties in initial and boundary conditions are represented with an ensemble forecasting system, while uncertainties in the spatial representation are included with a neighbourhood method. Using probabilistic forecasting instead of one single forecast was shown to improve the forecast skill of the ice-related production loss forecasts and hence the icing forecasts. The spread of the multiple forecasts can be used as an estimate of the forecast uncertainty and of the likelihood for icing and severe production losses. Best results, both in terms of forecast skill and forecasted uncertainty, were achieved using both the ensemble forecast and the neighbourhood method combined. This demonstrates that the application of probabilistic forecasting for wind power in cold climates can be valuable when planning next-day energy production, in the usage of de-icing systems and for site safety. |
doi_str_mv | 10.5194/wes-3-667-2018 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8164b4b1cbf44add8e9910af2df2f8ed</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8164b4b1cbf44add8e9910af2df2f8ed</doaj_id><sourcerecordid>2117078983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-bb86ceb197ee5987efff3ea70b62691a5323857c8aa2e2a05df1d7bd9122ff393</originalsourceid><addsrcrecordid>eNpVkMtLAzEQhxdRsFSvngNeXc1jNw9vpT5B0IOKtyWPSUlZNzXZpfS_N1gRPM0wfPMxv6mqM4IvW6Kaqy3kmtWci5piIg-qGWWc16JpyeFf37Dj6jTnNca4QIxJMas-XlI02oQ-5DFY5GMCq0s7rFD0aBsGhzZxCwltUnSTHUMcUB9zhozCgGzsHbJ9-NQj5GukUdkFlMfJ7U6qI6_7DKe_dV693d2-Lh_qp-f7x-XiqbYNwWNtjOQWDFECoFVSgPeegRbYcMoV0S2jTLbCSq0pUI1b54kTxilCaSEVm1ePe6-Let1tUrkl7bqoQ_cziGnV6VSi9dBJwhvTGGKNbxrtnASlCNaeOk-9BFdcF3tX3sJmMv9sN-F98WObpo5xKgUt-PkeL7_5miCP3TpOaShpO0qIwEIqydg3x-h-_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117078983</pqid></control><display><type>article</type><title>Probabilistic forecasting of wind power production losses in cold climates: a case study</title><source>Publicly Available Content Database</source><creator>Molinder, Jennie ; Körnich, Heiner ; Olsson, Esbjörn ; Bergström, Hans ; Sjöblom, Anna</creator><creatorcontrib>Molinder, Jennie ; Körnich, Heiner ; Olsson, Esbjörn ; Bergström, Hans ; Sjöblom, Anna</creatorcontrib><description>The problem of icing on wind turbines in cold climates is addressed using probabilistic forecasting to improve next-day forecasts of icing and related production losses. A case study of probabilistic forecasts was generated for a 2-week period. Uncertainties in initial and boundary conditions are represented with an ensemble forecasting system, while uncertainties in the spatial representation are included with a neighbourhood method. Using probabilistic forecasting instead of one single forecast was shown to improve the forecast skill of the ice-related production loss forecasts and hence the icing forecasts. The spread of the multiple forecasts can be used as an estimate of the forecast uncertainty and of the likelihood for icing and severe production losses. Best results, both in terms of forecast skill and forecasted uncertainty, were achieved using both the ensemble forecast and the neighbourhood method combined. This demonstrates that the application of probabilistic forecasting for wind power in cold climates can be valuable when planning next-day energy production, in the usage of de-icing systems and for site safety.</description><identifier>ISSN: 2366-7443</identifier><identifier>ISSN: 2366-7451</identifier><identifier>EISSN: 2366-7451</identifier><identifier>DOI: 10.5194/wes-3-667-2018</identifier><language>eng</language><publisher>Göttingen: Copernicus GmbH</publisher><subject>Boundary conditions ; Case studies ; Climate ; ensemble prediction ; Forecasting ; Maintenance management ; Meteorologi ; Meteorology ; precipitation ; Renewable energy ; strategy ; Turbines ; wet snow ; Wind power</subject><ispartof>Wind Energy Science, 2018, Vol.3 (2), p.667-680</ispartof><rights>2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-bb86ceb197ee5987efff3ea70b62691a5323857c8aa2e2a05df1d7bd9122ff393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2117078983/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2117078983?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4009,25732,27902,27903,27904,36991,44569,74872</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-362872$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Molinder, Jennie</creatorcontrib><creatorcontrib>Körnich, Heiner</creatorcontrib><creatorcontrib>Olsson, Esbjörn</creatorcontrib><creatorcontrib>Bergström, Hans</creatorcontrib><creatorcontrib>Sjöblom, Anna</creatorcontrib><title>Probabilistic forecasting of wind power production losses in cold climates: a case study</title><title>Wind Energy Science</title><description>The problem of icing on wind turbines in cold climates is addressed using probabilistic forecasting to improve next-day forecasts of icing and related production losses. A case study of probabilistic forecasts was generated for a 2-week period. Uncertainties in initial and boundary conditions are represented with an ensemble forecasting system, while uncertainties in the spatial representation are included with a neighbourhood method. Using probabilistic forecasting instead of one single forecast was shown to improve the forecast skill of the ice-related production loss forecasts and hence the icing forecasts. The spread of the multiple forecasts can be used as an estimate of the forecast uncertainty and of the likelihood for icing and severe production losses. Best results, both in terms of forecast skill and forecasted uncertainty, were achieved using both the ensemble forecast and the neighbourhood method combined. This demonstrates that the application of probabilistic forecasting for wind power in cold climates can be valuable when planning next-day energy production, in the usage of de-icing systems and for site safety.</description><subject>Boundary conditions</subject><subject>Case studies</subject><subject>Climate</subject><subject>ensemble prediction</subject><subject>Forecasting</subject><subject>Maintenance management</subject><subject>Meteorologi</subject><subject>Meteorology</subject><subject>precipitation</subject><subject>Renewable energy</subject><subject>strategy</subject><subject>Turbines</subject><subject>wet snow</subject><subject>Wind power</subject><issn>2366-7443</issn><issn>2366-7451</issn><issn>2366-7451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkMtLAzEQhxdRsFSvngNeXc1jNw9vpT5B0IOKtyWPSUlZNzXZpfS_N1gRPM0wfPMxv6mqM4IvW6Kaqy3kmtWci5piIg-qGWWc16JpyeFf37Dj6jTnNca4QIxJMas-XlI02oQ-5DFY5GMCq0s7rFD0aBsGhzZxCwltUnSTHUMcUB9zhozCgGzsHbJ9-NQj5GukUdkFlMfJ7U6qI6_7DKe_dV693d2-Lh_qp-f7x-XiqbYNwWNtjOQWDFECoFVSgPeegRbYcMoV0S2jTLbCSq0pUI1b54kTxilCaSEVm1ePe6-Let1tUrkl7bqoQ_cziGnV6VSi9dBJwhvTGGKNbxrtnASlCNaeOk-9BFdcF3tX3sJmMv9sN-F98WObpo5xKgUt-PkeL7_5miCP3TpOaShpO0qIwEIqydg3x-h-_g</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Molinder, Jennie</creator><creator>Körnich, Heiner</creator><creator>Olsson, Esbjörn</creator><creator>Bergström, Hans</creator><creator>Sjöblom, Anna</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>2018</creationdate><title>Probabilistic forecasting of wind power production losses in cold climates: a case study</title><author>Molinder, Jennie ; Körnich, Heiner ; Olsson, Esbjörn ; Bergström, Hans ; Sjöblom, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-bb86ceb197ee5987efff3ea70b62691a5323857c8aa2e2a05df1d7bd9122ff393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary conditions</topic><topic>Case studies</topic><topic>Climate</topic><topic>ensemble prediction</topic><topic>Forecasting</topic><topic>Maintenance management</topic><topic>Meteorologi</topic><topic>Meteorology</topic><topic>precipitation</topic><topic>Renewable energy</topic><topic>strategy</topic><topic>Turbines</topic><topic>wet snow</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molinder, Jennie</creatorcontrib><creatorcontrib>Körnich, Heiner</creatorcontrib><creatorcontrib>Olsson, Esbjörn</creatorcontrib><creatorcontrib>Bergström, Hans</creatorcontrib><creatorcontrib>Sjöblom, Anna</creatorcontrib><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>Directory of Open Access Journals</collection><jtitle>Wind Energy Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molinder, Jennie</au><au>Körnich, Heiner</au><au>Olsson, Esbjörn</au><au>Bergström, Hans</au><au>Sjöblom, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic forecasting of wind power production losses in cold climates: a case study</atitle><jtitle>Wind Energy Science</jtitle><date>2018</date><risdate>2018</risdate><volume>3</volume><issue>2</issue><spage>667</spage><epage>680</epage><pages>667-680</pages><issn>2366-7443</issn><issn>2366-7451</issn><eissn>2366-7451</eissn><abstract>The problem of icing on wind turbines in cold climates is addressed using probabilistic forecasting to improve next-day forecasts of icing and related production losses. A case study of probabilistic forecasts was generated for a 2-week period. Uncertainties in initial and boundary conditions are represented with an ensemble forecasting system, while uncertainties in the spatial representation are included with a neighbourhood method. Using probabilistic forecasting instead of one single forecast was shown to improve the forecast skill of the ice-related production loss forecasts and hence the icing forecasts. The spread of the multiple forecasts can be used as an estimate of the forecast uncertainty and of the likelihood for icing and severe production losses. Best results, both in terms of forecast skill and forecasted uncertainty, were achieved using both the ensemble forecast and the neighbourhood method combined. This demonstrates that the application of probabilistic forecasting for wind power in cold climates can be valuable when planning next-day energy production, in the usage of de-icing systems and for site safety.</abstract><cop>Göttingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/wes-3-667-2018</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2366-7443 |
ispartof | Wind Energy Science, 2018, Vol.3 (2), p.667-680 |
issn | 2366-7443 2366-7451 2366-7451 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8164b4b1cbf44add8e9910af2df2f8ed |
source | Publicly Available Content Database |
subjects | Boundary conditions Case studies Climate ensemble prediction Forecasting Maintenance management Meteorologi Meteorology precipitation Renewable energy strategy Turbines wet snow Wind power |
title | Probabilistic forecasting of wind power production losses in cold climates: a case study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20forecasting%20of%20wind%20power%20production%20losses%20in%20cold%20climates:%20a%20case%20study&rft.jtitle=Wind%20Energy%20Science&rft.au=Molinder,%20Jennie&rft.date=2018&rft.volume=3&rft.issue=2&rft.spage=667&rft.epage=680&rft.pages=667-680&rft.issn=2366-7443&rft.eissn=2366-7451&rft_id=info:doi/10.5194/wes-3-667-2018&rft_dat=%3Cproquest_doaj_%3E2117078983%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-bb86ceb197ee5987efff3ea70b62691a5323857c8aa2e2a05df1d7bd9122ff393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117078983&rft_id=info:pmid/&rfr_iscdi=true |