Loading…
Huygens' Principle geometric derivation and elimination of the wake and backward wave
Huygens' Principle (1678) implies that every point on a wave front serves as a source of secondary wavelets, and the new wave front is the tangential surface to all the secondary wavelets. But two problems arise: portions of wavelets that exist outside of the new wave front combine to form a wa...
Saved in:
Published in: | Scientific reports 2021-10, Vol.11 (1), p.20257-20257, Article 20257 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Huygens' Principle (1678) implies that every point on a wave front serves as a source of secondary wavelets, and the new wave front is the tangential surface to all the secondary wavelets. But two problems arise: portions of wavelets that exist outside of the new wave front combine to form a wake. Also there are two tangential surfaces so wave fronts are propagated in both the forward and backward directions. These problems have not previously been resolved by using a geometrical theory with impulsive wavelets that are in harmony with Huygens' geometrical description. Doing so would provide deeper understanding of and greater intuition into wave propagation, in addition to providing a new model for wave propagation analysis. The interpretation, developed here, of Huygens' geometrical construction shows Huygens' Principle to be correct: as for the wake, the Huygens' wavelets disappear when combined except where they contact their common tangent surfaces, the new propagating wave fronts. As for the backward wave, a source propagates both a forward wave and a backward wave when it is stationary, but it propagates only the forward wave front when it is advancing with a speed equal to the propagation speed of the wave fronts. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-99049-7 |