Loading…

Spectroscopic Fingerprinting of Organic Material Extracted from Tight Chalk Core Samples of the North Sea

The detailed chemical composition of crude oil in subsurface reservoirs provides important information about reservoir connectivity and can potentially play a very important role for the understanding of recovery processes. Relying on studying produced oil samples alone to understand the rock-fluid...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2020-12, Vol.5 (49), p.31753-31764
Main Authors: Mihrin, Dmytro, Li, Ming, Sánchez, M. Alejandra, Hoeck, Casper, Larsen, René Wugt, Feilberg, Karen Louise
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The detailed chemical composition of crude oil in subsurface reservoirs provides important information about reservoir connectivity and can potentially play a very important role for the understanding of recovery processes. Relying on studying produced oil samples alone to understand the rock-fluid and fluid–fluid interactions is insufficient as the heavier polar components may be retained by tight reservoirs and not produced. These heavy and polar compounds that constitute the resin and asphaltene fractions of crude oil are typically present in low concentrations and yet are determining for the physical–chemical properties of the oil because of their polarity. In order to obtain a fingerprint analysis of oils including polar compounds from different wells, the oil content of drill cores has been extracted and analyzed. Infrared spectroscopy has been used to perform chemical fingerprinting of the oil extracted from drill cores sampled in different geographical locations of the Danish North Sea. Statistical analysis has been employed to identify the chemical differences within the sample set and explore the link between chemical composition and geographic location of the sample. A principal component analysis, based on spectral peak fitting in the 1800–1400 cm–1 range, has allowed for statistical grouping of the samples and identified the primary chemical feature characteristic of these groups. Statistically significant differences in the quantities of polar oxygen- and nitrogen-containing compounds were found between the oil wells. The results of this analysis have been used as guidelines and reference to establish an express statistical approach based on the full-range infrared spectra for a further expansion of the sample set. The chemical information presented in this work is discussed in relation to oil fingerprinting and geochemical analysis.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.0c04431