Loading…
Determining Equipment Capacity of Electric Vehicle Charging Station Operator for Profit Maximization
Related to global efforts to reduce greenhouse gases, numerous electric vehicles (EVs) are expected to be integrated to the power grid. However, the introduction of EVs, particularly in Korea, is still marginal due to the lack of EV charging infrastructure, even though various supportive policies ex...
Saved in:
Published in: | Energies (Basel) 2018-09, Vol.11 (9), p.2301 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Related to global efforts to reduce greenhouse gases, numerous electric vehicles (EVs) are expected to be integrated to the power grid. However, the introduction of EVs, particularly in Korea, is still marginal due to the lack of EV charging infrastructure, even though various supportive policies exist. To address this shortage of EV charging stations, the EV charging business needs to be profitable. As with any business, the profitability of the EV charging business is significantly affected by the initial capital investment related to EV chargers and auxiliary equipment such as power conditioning system (PCS), battery energy storage system (BESS), and on-site photovoltaic (PV) generation system. Thus, we propose a formulation to determine the number of EV chargers and the capacity of auxiliary equipment with the objective of a charging station operator (CSO) maximizing profit under regulatory, economic, and physical constraints. The effectiveness of the proposed method is verified with simulations considering various EV charging patterns. The study results will help improve the EV charging infrastructure by encouraging individuals and companies to participate in EV charging business. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en11092301 |