Loading…

Synthetical Modal Parameters Identification Method of Damped Oscillation Signals in Power System

It is vital to improve the stability of the power system by accurately identifying the modal parameters of damped low-frequency oscillations (DLFO) and controlling the oscillation in time. A new method based on empirical mode decomposition (EMD), stochastic subspace identification (SSI), and Prony a...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-05, Vol.12 (9), p.4668
Main Authors: Li, Huan, Bu, Siqi, Wen, Jiong-Ran, Fei, Cheng-Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073
cites cdi_FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073
container_end_page
container_issue 9
container_start_page 4668
container_title Applied sciences
container_volume 12
creator Li, Huan
Bu, Siqi
Wen, Jiong-Ran
Fei, Cheng-Wei
description It is vital to improve the stability of the power system by accurately identifying the modal parameters of damped low-frequency oscillations (DLFO) and controlling the oscillation in time. A new method based on empirical mode decomposition (EMD), stochastic subspace identification (SSI), and Prony algorithms, called synthetical modal parameters identification (SMPI) method, is developed by efficiently matching the modal parameters of DLFO which are acquired from the SSI and Prony algorithm. In this approach, EMD is used for denoising the raw oscillation signals thereby enhancing the noise resistance, and then using the SSI and Prony algorithms to identify the precise modal parameters assisted by parameter matching. It is demonstrated that the proposed SMPI method holds great accuracy in identifying full modal parameters including natural frequencies, damping ratios, amplitudes, and phase angles with simulated signals with known modal parameters and real-time signals from some power system case studies. The strategy of SMPI has effectively overcome the weakness of a single approach, and the identification results are promising to heighten the stabilization of power systems. Besides, SMPI shows the potential to troubleshoot in different fields, such as construction, aeronautics, and marine, for its satisfactory robustness and generalization ability.
doi_str_mv 10.3390/app12094668
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_81c3452dfb754ef5a15cfcdd9a1c27a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_81c3452dfb754ef5a15cfcdd9a1c27a3</doaj_id><sourcerecordid>2662908629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073</originalsourceid><addsrcrecordid>eNpNkV1LLDEMhoscQVm98g8UvDzssV_Tmbk8-LmworB6XTNtqrPMTse2Ivvvra6IuXgT3oQnhBBywtk_KVt2BtPEBWuV1s0eORSs1nOpeP3nV31AjlNasxItlw1nh-RptR3zC-bewkBvgyt6DxE2mDEmunA45t6XZu7DSG8xvwRHg6cXsJnQ0btk-2HYNVf98whDov1I78M7RrrapoybI7Lvi43H33lGHq8uH85v5su768X5_-XcSq3yXNWd7TrVAO98qzxa3SHUUjBWV85X2oLmnejQSqUcSAmV0FhJFExxjayWM7LYcV2AtZliv4G4NQF682WE-GwgljMHNA0vlEo439WVQl8Br6y3zrXAragLfEZOd6wphtc3TNmsw1v8vM4IrUXLmiJl6u9uysaQUkT_s5Uz8_kR8-sj8gPywH7p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662908629</pqid></control><display><type>article</type><title>Synthetical Modal Parameters Identification Method of Damped Oscillation Signals in Power System</title><source>Publicly Available Content Database</source><creator>Li, Huan ; Bu, Siqi ; Wen, Jiong-Ran ; Fei, Cheng-Wei</creator><creatorcontrib>Li, Huan ; Bu, Siqi ; Wen, Jiong-Ran ; Fei, Cheng-Wei</creatorcontrib><description>It is vital to improve the stability of the power system by accurately identifying the modal parameters of damped low-frequency oscillations (DLFO) and controlling the oscillation in time. A new method based on empirical mode decomposition (EMD), stochastic subspace identification (SSI), and Prony algorithms, called synthetical modal parameters identification (SMPI) method, is developed by efficiently matching the modal parameters of DLFO which are acquired from the SSI and Prony algorithm. In this approach, EMD is used for denoising the raw oscillation signals thereby enhancing the noise resistance, and then using the SSI and Prony algorithms to identify the precise modal parameters assisted by parameter matching. It is demonstrated that the proposed SMPI method holds great accuracy in identifying full modal parameters including natural frequencies, damping ratios, amplitudes, and phase angles with simulated signals with known modal parameters and real-time signals from some power system case studies. The strategy of SMPI has effectively overcome the weakness of a single approach, and the identification results are promising to heighten the stabilization of power systems. Besides, SMPI shows the potential to troubleshoot in different fields, such as construction, aeronautics, and marine, for its satisfactory robustness and generalization ability.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12094668</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aeronautics ; Algorithms ; Damping ratio ; Electricity distribution ; Identification methods ; low-frequency oscillations ; Methods ; modal identification ; Noise ; Oscillations ; Parameter identification ; parameter matching ; Prony ; Resonant frequencies ; stochastic subspace identification ; Time signals ; Troubleshooting ; Wavelet transforms</subject><ispartof>Applied sciences, 2022-05, Vol.12 (9), p.4668</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073</citedby><cites>FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073</cites><orcidid>0000-0001-5333-1055 ; 0000-0002-1047-2568 ; 0000-0003-2291-296X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2662908629/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2662908629?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Bu, Siqi</creatorcontrib><creatorcontrib>Wen, Jiong-Ran</creatorcontrib><creatorcontrib>Fei, Cheng-Wei</creatorcontrib><title>Synthetical Modal Parameters Identification Method of Damped Oscillation Signals in Power System</title><title>Applied sciences</title><description>It is vital to improve the stability of the power system by accurately identifying the modal parameters of damped low-frequency oscillations (DLFO) and controlling the oscillation in time. A new method based on empirical mode decomposition (EMD), stochastic subspace identification (SSI), and Prony algorithms, called synthetical modal parameters identification (SMPI) method, is developed by efficiently matching the modal parameters of DLFO which are acquired from the SSI and Prony algorithm. In this approach, EMD is used for denoising the raw oscillation signals thereby enhancing the noise resistance, and then using the SSI and Prony algorithms to identify the precise modal parameters assisted by parameter matching. It is demonstrated that the proposed SMPI method holds great accuracy in identifying full modal parameters including natural frequencies, damping ratios, amplitudes, and phase angles with simulated signals with known modal parameters and real-time signals from some power system case studies. The strategy of SMPI has effectively overcome the weakness of a single approach, and the identification results are promising to heighten the stabilization of power systems. Besides, SMPI shows the potential to troubleshoot in different fields, such as construction, aeronautics, and marine, for its satisfactory robustness and generalization ability.</description><subject>Aeronautics</subject><subject>Algorithms</subject><subject>Damping ratio</subject><subject>Electricity distribution</subject><subject>Identification methods</subject><subject>low-frequency oscillations</subject><subject>Methods</subject><subject>modal identification</subject><subject>Noise</subject><subject>Oscillations</subject><subject>Parameter identification</subject><subject>parameter matching</subject><subject>Prony</subject><subject>Resonant frequencies</subject><subject>stochastic subspace identification</subject><subject>Time signals</subject><subject>Troubleshooting</subject><subject>Wavelet transforms</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1LLDEMhoscQVm98g8UvDzssV_Tmbk8-LmworB6XTNtqrPMTse2Ivvvra6IuXgT3oQnhBBywtk_KVt2BtPEBWuV1s0eORSs1nOpeP3nV31AjlNasxItlw1nh-RptR3zC-bewkBvgyt6DxE2mDEmunA45t6XZu7DSG8xvwRHg6cXsJnQ0btk-2HYNVf98whDov1I78M7RrrapoybI7Lvi43H33lGHq8uH85v5su768X5_-XcSq3yXNWd7TrVAO98qzxa3SHUUjBWV85X2oLmnejQSqUcSAmV0FhJFExxjayWM7LYcV2AtZliv4G4NQF682WE-GwgljMHNA0vlEo439WVQl8Br6y3zrXAragLfEZOd6wphtc3TNmsw1v8vM4IrUXLmiJl6u9uysaQUkT_s5Uz8_kR8-sj8gPywH7p</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Li, Huan</creator><creator>Bu, Siqi</creator><creator>Wen, Jiong-Ran</creator><creator>Fei, Cheng-Wei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid><orcidid>https://orcid.org/0000-0002-1047-2568</orcidid><orcidid>https://orcid.org/0000-0003-2291-296X</orcidid></search><sort><creationdate>20220501</creationdate><title>Synthetical Modal Parameters Identification Method of Damped Oscillation Signals in Power System</title><author>Li, Huan ; Bu, Siqi ; Wen, Jiong-Ran ; Fei, Cheng-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aeronautics</topic><topic>Algorithms</topic><topic>Damping ratio</topic><topic>Electricity distribution</topic><topic>Identification methods</topic><topic>low-frequency oscillations</topic><topic>Methods</topic><topic>modal identification</topic><topic>Noise</topic><topic>Oscillations</topic><topic>Parameter identification</topic><topic>parameter matching</topic><topic>Prony</topic><topic>Resonant frequencies</topic><topic>stochastic subspace identification</topic><topic>Time signals</topic><topic>Troubleshooting</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Bu, Siqi</creatorcontrib><creatorcontrib>Wen, Jiong-Ran</creatorcontrib><creatorcontrib>Fei, Cheng-Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huan</au><au>Bu, Siqi</au><au>Wen, Jiong-Ran</au><au>Fei, Cheng-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetical Modal Parameters Identification Method of Damped Oscillation Signals in Power System</atitle><jtitle>Applied sciences</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>12</volume><issue>9</issue><spage>4668</spage><pages>4668-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>It is vital to improve the stability of the power system by accurately identifying the modal parameters of damped low-frequency oscillations (DLFO) and controlling the oscillation in time. A new method based on empirical mode decomposition (EMD), stochastic subspace identification (SSI), and Prony algorithms, called synthetical modal parameters identification (SMPI) method, is developed by efficiently matching the modal parameters of DLFO which are acquired from the SSI and Prony algorithm. In this approach, EMD is used for denoising the raw oscillation signals thereby enhancing the noise resistance, and then using the SSI and Prony algorithms to identify the precise modal parameters assisted by parameter matching. It is demonstrated that the proposed SMPI method holds great accuracy in identifying full modal parameters including natural frequencies, damping ratios, amplitudes, and phase angles with simulated signals with known modal parameters and real-time signals from some power system case studies. The strategy of SMPI has effectively overcome the weakness of a single approach, and the identification results are promising to heighten the stabilization of power systems. Besides, SMPI shows the potential to troubleshoot in different fields, such as construction, aeronautics, and marine, for its satisfactory robustness and generalization ability.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12094668</doi><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid><orcidid>https://orcid.org/0000-0002-1047-2568</orcidid><orcidid>https://orcid.org/0000-0003-2291-296X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2022-05, Vol.12 (9), p.4668
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_81c3452dfb754ef5a15cfcdd9a1c27a3
source Publicly Available Content Database
subjects Aeronautics
Algorithms
Damping ratio
Electricity distribution
Identification methods
low-frequency oscillations
Methods
modal identification
Noise
Oscillations
Parameter identification
parameter matching
Prony
Resonant frequencies
stochastic subspace identification
Time signals
Troubleshooting
Wavelet transforms
title Synthetical Modal Parameters Identification Method of Damped Oscillation Signals in Power System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetical%20Modal%20Parameters%20Identification%20Method%20of%20Damped%20Oscillation%20Signals%20in%20Power%20System&rft.jtitle=Applied%20sciences&rft.au=Li,%20Huan&rft.date=2022-05-01&rft.volume=12&rft.issue=9&rft.spage=4668&rft.pages=4668-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12094668&rft_dat=%3Cproquest_doaj_%3E2662908629%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2662908629&rft_id=info:pmid/&rfr_iscdi=true