Loading…
Synthetical Modal Parameters Identification Method of Damped Oscillation Signals in Power System
It is vital to improve the stability of the power system by accurately identifying the modal parameters of damped low-frequency oscillations (DLFO) and controlling the oscillation in time. A new method based on empirical mode decomposition (EMD), stochastic subspace identification (SSI), and Prony a...
Saved in:
Published in: | Applied sciences 2022-05, Vol.12 (9), p.4668 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073 |
container_end_page | |
container_issue | 9 |
container_start_page | 4668 |
container_title | Applied sciences |
container_volume | 12 |
creator | Li, Huan Bu, Siqi Wen, Jiong-Ran Fei, Cheng-Wei |
description | It is vital to improve the stability of the power system by accurately identifying the modal parameters of damped low-frequency oscillations (DLFO) and controlling the oscillation in time. A new method based on empirical mode decomposition (EMD), stochastic subspace identification (SSI), and Prony algorithms, called synthetical modal parameters identification (SMPI) method, is developed by efficiently matching the modal parameters of DLFO which are acquired from the SSI and Prony algorithm. In this approach, EMD is used for denoising the raw oscillation signals thereby enhancing the noise resistance, and then using the SSI and Prony algorithms to identify the precise modal parameters assisted by parameter matching. It is demonstrated that the proposed SMPI method holds great accuracy in identifying full modal parameters including natural frequencies, damping ratios, amplitudes, and phase angles with simulated signals with known modal parameters and real-time signals from some power system case studies. The strategy of SMPI has effectively overcome the weakness of a single approach, and the identification results are promising to heighten the stabilization of power systems. Besides, SMPI shows the potential to troubleshoot in different fields, such as construction, aeronautics, and marine, for its satisfactory robustness and generalization ability. |
doi_str_mv | 10.3390/app12094668 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_81c3452dfb754ef5a15cfcdd9a1c27a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_81c3452dfb754ef5a15cfcdd9a1c27a3</doaj_id><sourcerecordid>2662908629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073</originalsourceid><addsrcrecordid>eNpNkV1LLDEMhoscQVm98g8UvDzssV_Tmbk8-LmworB6XTNtqrPMTse2Ivvvra6IuXgT3oQnhBBywtk_KVt2BtPEBWuV1s0eORSs1nOpeP3nV31AjlNasxItlw1nh-RptR3zC-bewkBvgyt6DxE2mDEmunA45t6XZu7DSG8xvwRHg6cXsJnQ0btk-2HYNVf98whDov1I78M7RrrapoybI7Lvi43H33lGHq8uH85v5su768X5_-XcSq3yXNWd7TrVAO98qzxa3SHUUjBWV85X2oLmnejQSqUcSAmV0FhJFExxjayWM7LYcV2AtZliv4G4NQF682WE-GwgljMHNA0vlEo439WVQl8Br6y3zrXAragLfEZOd6wphtc3TNmsw1v8vM4IrUXLmiJl6u9uysaQUkT_s5Uz8_kR8-sj8gPywH7p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662908629</pqid></control><display><type>article</type><title>Synthetical Modal Parameters Identification Method of Damped Oscillation Signals in Power System</title><source>Publicly Available Content Database</source><creator>Li, Huan ; Bu, Siqi ; Wen, Jiong-Ran ; Fei, Cheng-Wei</creator><creatorcontrib>Li, Huan ; Bu, Siqi ; Wen, Jiong-Ran ; Fei, Cheng-Wei</creatorcontrib><description>It is vital to improve the stability of the power system by accurately identifying the modal parameters of damped low-frequency oscillations (DLFO) and controlling the oscillation in time. A new method based on empirical mode decomposition (EMD), stochastic subspace identification (SSI), and Prony algorithms, called synthetical modal parameters identification (SMPI) method, is developed by efficiently matching the modal parameters of DLFO which are acquired from the SSI and Prony algorithm. In this approach, EMD is used for denoising the raw oscillation signals thereby enhancing the noise resistance, and then using the SSI and Prony algorithms to identify the precise modal parameters assisted by parameter matching. It is demonstrated that the proposed SMPI method holds great accuracy in identifying full modal parameters including natural frequencies, damping ratios, amplitudes, and phase angles with simulated signals with known modal parameters and real-time signals from some power system case studies. The strategy of SMPI has effectively overcome the weakness of a single approach, and the identification results are promising to heighten the stabilization of power systems. Besides, SMPI shows the potential to troubleshoot in different fields, such as construction, aeronautics, and marine, for its satisfactory robustness and generalization ability.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12094668</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aeronautics ; Algorithms ; Damping ratio ; Electricity distribution ; Identification methods ; low-frequency oscillations ; Methods ; modal identification ; Noise ; Oscillations ; Parameter identification ; parameter matching ; Prony ; Resonant frequencies ; stochastic subspace identification ; Time signals ; Troubleshooting ; Wavelet transforms</subject><ispartof>Applied sciences, 2022-05, Vol.12 (9), p.4668</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073</citedby><cites>FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073</cites><orcidid>0000-0001-5333-1055 ; 0000-0002-1047-2568 ; 0000-0003-2291-296X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2662908629/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2662908629?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Bu, Siqi</creatorcontrib><creatorcontrib>Wen, Jiong-Ran</creatorcontrib><creatorcontrib>Fei, Cheng-Wei</creatorcontrib><title>Synthetical Modal Parameters Identification Method of Damped Oscillation Signals in Power System</title><title>Applied sciences</title><description>It is vital to improve the stability of the power system by accurately identifying the modal parameters of damped low-frequency oscillations (DLFO) and controlling the oscillation in time. A new method based on empirical mode decomposition (EMD), stochastic subspace identification (SSI), and Prony algorithms, called synthetical modal parameters identification (SMPI) method, is developed by efficiently matching the modal parameters of DLFO which are acquired from the SSI and Prony algorithm. In this approach, EMD is used for denoising the raw oscillation signals thereby enhancing the noise resistance, and then using the SSI and Prony algorithms to identify the precise modal parameters assisted by parameter matching. It is demonstrated that the proposed SMPI method holds great accuracy in identifying full modal parameters including natural frequencies, damping ratios, amplitudes, and phase angles with simulated signals with known modal parameters and real-time signals from some power system case studies. The strategy of SMPI has effectively overcome the weakness of a single approach, and the identification results are promising to heighten the stabilization of power systems. Besides, SMPI shows the potential to troubleshoot in different fields, such as construction, aeronautics, and marine, for its satisfactory robustness and generalization ability.</description><subject>Aeronautics</subject><subject>Algorithms</subject><subject>Damping ratio</subject><subject>Electricity distribution</subject><subject>Identification methods</subject><subject>low-frequency oscillations</subject><subject>Methods</subject><subject>modal identification</subject><subject>Noise</subject><subject>Oscillations</subject><subject>Parameter identification</subject><subject>parameter matching</subject><subject>Prony</subject><subject>Resonant frequencies</subject><subject>stochastic subspace identification</subject><subject>Time signals</subject><subject>Troubleshooting</subject><subject>Wavelet transforms</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1LLDEMhoscQVm98g8UvDzssV_Tmbk8-LmworB6XTNtqrPMTse2Ivvvra6IuXgT3oQnhBBywtk_KVt2BtPEBWuV1s0eORSs1nOpeP3nV31AjlNasxItlw1nh-RptR3zC-bewkBvgyt6DxE2mDEmunA45t6XZu7DSG8xvwRHg6cXsJnQ0btk-2HYNVf98whDov1I78M7RrrapoybI7Lvi43H33lGHq8uH85v5su768X5_-XcSq3yXNWd7TrVAO98qzxa3SHUUjBWV85X2oLmnejQSqUcSAmV0FhJFExxjayWM7LYcV2AtZliv4G4NQF682WE-GwgljMHNA0vlEo439WVQl8Br6y3zrXAragLfEZOd6wphtc3TNmsw1v8vM4IrUXLmiJl6u9uysaQUkT_s5Uz8_kR8-sj8gPywH7p</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Li, Huan</creator><creator>Bu, Siqi</creator><creator>Wen, Jiong-Ran</creator><creator>Fei, Cheng-Wei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid><orcidid>https://orcid.org/0000-0002-1047-2568</orcidid><orcidid>https://orcid.org/0000-0003-2291-296X</orcidid></search><sort><creationdate>20220501</creationdate><title>Synthetical Modal Parameters Identification Method of Damped Oscillation Signals in Power System</title><author>Li, Huan ; Bu, Siqi ; Wen, Jiong-Ran ; Fei, Cheng-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aeronautics</topic><topic>Algorithms</topic><topic>Damping ratio</topic><topic>Electricity distribution</topic><topic>Identification methods</topic><topic>low-frequency oscillations</topic><topic>Methods</topic><topic>modal identification</topic><topic>Noise</topic><topic>Oscillations</topic><topic>Parameter identification</topic><topic>parameter matching</topic><topic>Prony</topic><topic>Resonant frequencies</topic><topic>stochastic subspace identification</topic><topic>Time signals</topic><topic>Troubleshooting</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Bu, Siqi</creatorcontrib><creatorcontrib>Wen, Jiong-Ran</creatorcontrib><creatorcontrib>Fei, Cheng-Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huan</au><au>Bu, Siqi</au><au>Wen, Jiong-Ran</au><au>Fei, Cheng-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetical Modal Parameters Identification Method of Damped Oscillation Signals in Power System</atitle><jtitle>Applied sciences</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>12</volume><issue>9</issue><spage>4668</spage><pages>4668-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>It is vital to improve the stability of the power system by accurately identifying the modal parameters of damped low-frequency oscillations (DLFO) and controlling the oscillation in time. A new method based on empirical mode decomposition (EMD), stochastic subspace identification (SSI), and Prony algorithms, called synthetical modal parameters identification (SMPI) method, is developed by efficiently matching the modal parameters of DLFO which are acquired from the SSI and Prony algorithm. In this approach, EMD is used for denoising the raw oscillation signals thereby enhancing the noise resistance, and then using the SSI and Prony algorithms to identify the precise modal parameters assisted by parameter matching. It is demonstrated that the proposed SMPI method holds great accuracy in identifying full modal parameters including natural frequencies, damping ratios, amplitudes, and phase angles with simulated signals with known modal parameters and real-time signals from some power system case studies. The strategy of SMPI has effectively overcome the weakness of a single approach, and the identification results are promising to heighten the stabilization of power systems. Besides, SMPI shows the potential to troubleshoot in different fields, such as construction, aeronautics, and marine, for its satisfactory robustness and generalization ability.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12094668</doi><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid><orcidid>https://orcid.org/0000-0002-1047-2568</orcidid><orcidid>https://orcid.org/0000-0003-2291-296X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2022-05, Vol.12 (9), p.4668 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_81c3452dfb754ef5a15cfcdd9a1c27a3 |
source | Publicly Available Content Database |
subjects | Aeronautics Algorithms Damping ratio Electricity distribution Identification methods low-frequency oscillations Methods modal identification Noise Oscillations Parameter identification parameter matching Prony Resonant frequencies stochastic subspace identification Time signals Troubleshooting Wavelet transforms |
title | Synthetical Modal Parameters Identification Method of Damped Oscillation Signals in Power System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetical%20Modal%20Parameters%20Identification%20Method%20of%20Damped%20Oscillation%20Signals%20in%20Power%20System&rft.jtitle=Applied%20sciences&rft.au=Li,%20Huan&rft.date=2022-05-01&rft.volume=12&rft.issue=9&rft.spage=4668&rft.pages=4668-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12094668&rft_dat=%3Cproquest_doaj_%3E2662908629%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-47bcbb48a1bf94fec6bea7320075df56ca61b2bec344da33a526e53e20416e073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2662908629&rft_id=info:pmid/&rfr_iscdi=true |