Loading…

Activated Expression of Rice DMR6-like Gene OsS3H Partially Explores the Susceptibility to Bacterial Leaf Streak Mediated by Knock-Out OsF3H04g

Downy Mildew Resistance 6-like (DMR6-like) genes are identified as salicylic acid (SA) hydroxylases and negative regulators of plant immunity. Previously, we identified two rice DMR6-like genes, OsF3H03g, and OsF3H04g, that act as susceptible targets of transcription activator-like effectors (TALEs)...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2023-09, Vol.24 (17), p.13263
Main Authors: Wu, Tao, Bi, Yunya, Yu, Yue, Zhou, Zhou, Yuan, Bin, Ding, Xinhua, Zhang, Qingxia, Chen, Xiangsong, Yang, Hong, Liu, Haifeng, Chu, Zhaohui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Downy Mildew Resistance 6-like (DMR6-like) genes are identified as salicylic acid (SA) hydroxylases and negative regulators of plant immunity. Previously, we identified two rice DMR6-like genes, OsF3H03g, and OsF3H04g, that act as susceptible targets of transcription activator-like effectors (TALEs) from Xanthomonas oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak (BLS) in rice. Furthermore, all four homologs of rice DMR6-like proteins were identified to predominantly carry the enzyme activity of SA 5-hydroxylase (S5H), negatively regulate rice broad-spectrum resistance, and cause the loss of function of these OsDMR6s, leading to increased resistance to rice blast and bacterial blight (BB). Here, we curiously found that an OsF3H04g knock-out mutant created by T-DNA insertion, osf3h04g, was remarkedly susceptible to BLS and BB and showed an extreme reduction in SA content. OsF3H04g knock-out rice lines produced by gene-editing were mildly susceptible to BLS and reduced content of SA. To explore the susceptibility mechanism in OsF3H04g loss-of-function rice lines, transcriptome sequencing revealed that another homolog, OsS3H, had induced expression in the loss-of-function OsF3H04g rice lines. Furthermore, we confirmed that a great induction of OsS3H downstream and genomically adjacent to OsF3H04g in osf3h04g was primarily related to the inserted T-DNA carrying quadruple enhancer elements of 35S, while a slight induction was caused by an unknown mechanism in gene-editing lines. Then, we found that the overexpression of OsS3H increased rice susceptibility to BLS, while gene-editing mediated the loss-of-function OsS3H enhanced rice resistance to BLS. However, the knock-out of both OsF3H04g and OsS3H by gene-editing only neutralized rice resistance to BLS. Thus, we concluded that the knock-out of OsF3H04g activated the expression of the OsS3H, partially participating in the susceptibility to BLS in rice.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms241713263