Loading…

AI-Based Faster-Than-Real-Time Stability Assessment of Large Power Systems with Applications on WECC System

Achieving clean energy goals will require significant advances in regard to addressing the computational needs for next-generation renewable-dominated power grids. One critical obstacle that lies in the way of transitioning today’s power grid to a renewable-dominated power grid is the lack of a fast...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2023-01, Vol.16 (3), p.1401
Main Authors: Dong, Jiaojiao, Mandich, Mirka, Zhao, Yinfeng, Liu, Yang, You, Shutang, Liu, Yilu, Zhang, Hongming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Achieving clean energy goals will require significant advances in regard to addressing the computational needs for next-generation renewable-dominated power grids. One critical obstacle that lies in the way of transitioning today’s power grid to a renewable-dominated power grid is the lack of a faster-than-real-time stability assessment technology for operating a fast-changing power grid. This paper proposes an artificial intelligence (AI) -based method that predicts the system’s stability margin information (e.g., the frequency nadir in the frequency stability assessment and the critical clearing time (CCT) value in the transient stability assessment) directly from the system operating conditions without performing the conventional time-consuming time-domain simulations over detailed dynamic models. Since the AI method shifts the majority of the computational burden to offline training, the online evaluation is extremely fast. This paper has tested the AI-based stability assessment method using multiple dispatch cases that are converted and tuned from actual dispatch cases of the Western Electricity Coordinating Council (WECC) system model with more than 20,000 buses. The results show that the AI-based method could accurately predict the stability margin of such a large power system in less than 0.2 milliseconds using the offline-trained AI agent. Therefore, the proposed method has great potential to achieve faster-than-real-time stability assessment for practical large power systems while preserving sufficient accuracy.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16031401