Loading…

Hybrid Perovskite Terahertz Photoconductive Antenna

Hybrid organic-inorganic perovskites, while well examined for photovoltaic applications, remain almost completely unexplored in the terahertz (THz) range. These low-cost hybrid materials are extremely attractive for THz applications because their optoelectronic properties can be chemically engineere...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-01, Vol.11 (2), p.313
Main Authors: Obraztsov, Petr A, Bulgakova, Vladislava V, Chizhov, Pavel A, Ushakov, Alexander A, Gets, Dmitry S, Makarov, Sergey V, Bukin, Vladimir V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-2a716d288acc1b67de2ab1636729f58dd27c5069a3d8a7ff12a1ebcb76b0fe0c3
cites cdi_FETCH-LOGICAL-c478t-2a716d288acc1b67de2ab1636729f58dd27c5069a3d8a7ff12a1ebcb76b0fe0c3
container_end_page
container_issue 2
container_start_page 313
container_title Nanomaterials (Basel, Switzerland)
container_volume 11
creator Obraztsov, Petr A
Bulgakova, Vladislava V
Chizhov, Pavel A
Ushakov, Alexander A
Gets, Dmitry S
Makarov, Sergey V
Bukin, Vladimir V
description Hybrid organic-inorganic perovskites, while well examined for photovoltaic applications, remain almost completely unexplored in the terahertz (THz) range. These low-cost hybrid materials are extremely attractive for THz applications because their optoelectronic properties can be chemically engineered with relative ease. Here, we experimentally demonstrate the first attempt to apply solution-processed polycrystalline films of hybrid perovskites for the development of photoconductive terahertz emitters. By using the widely studied methylammonium-based perovskites MAPbI and MAPbBr , we fabricate and characterize large-aperture photoconductive antennas. The work presented here examines polycrystalline perovskite films excited both above and below the bandgap, as well as the scaling of THz emission with the applied bias field and the optical excitation fluence. The combination of ultrafast time-resolved spectroscopy and terahertz emission experiments allows us to determine the still-debated room temperature carrier lifetime and mobility of charge carriers in halide perovskites using an alternative noninvasive method. Our results demonstrate the applicability of hybrid perovskites for the development of scalable THz photoconductive devices, making these materials competitive with conventional semiconductors for THz emission.
doi_str_mv 10.3390/nano11020313
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_823e077a43f54ed184d3e2390f978930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_823e077a43f54ed184d3e2390f978930</doaj_id><sourcerecordid>2486153512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-2a716d288acc1b67de2ab1636729f58dd27c5069a3d8a7ff12a1ebcb76b0fe0c3</originalsourceid><addsrcrecordid>eNpdkcFrFDEUh4MottTePMuCFw-u5uVlJslFKEVtoWAP9RwyyZvurLNJTTIL7V_vrFvL1nfJI_n4eHk_xt4C_4Ro-OfoYgLggiPgC3YsuDJLaQy8POiP2Gkpaz6XAdQNvmZHiA1y2fBjhhf3XR7C4ppy2pZfQ6XFDWW3olwfFterVJNPMUy-DltanMVKMbo37FXvxkKnj-cJ-_nt6835xfLqx_fL87OrpZdK16VwCtogtHbeQ9eqQMJ10GKrhOkbHYJQvuGtcRi0U30PwgF1vlNtx3viHk_Y5d4bklvbuzxsXL63yQ3270XKt9blOviRrBZIXCknsW8kBdAyIIl5Q71R2iCfXV_2rrup21DwFGt24zPp85c4rOxt2lplQIhWzIIPj4Kcfk9Uqt0MxdM4ukhpKlZI3UKDDezQ9_-h6zTlOK9qR0kuQWk1Ux_3lM-plEz90zDA7S5cexjujL87_MAT_C9K_AMpxp73</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484041787</pqid></control><display><type>article</type><title>Hybrid Perovskite Terahertz Photoconductive Antenna</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><creator>Obraztsov, Petr A ; Bulgakova, Vladislava V ; Chizhov, Pavel A ; Ushakov, Alexander A ; Gets, Dmitry S ; Makarov, Sergey V ; Bukin, Vladimir V</creator><creatorcontrib>Obraztsov, Petr A ; Bulgakova, Vladislava V ; Chizhov, Pavel A ; Ushakov, Alexander A ; Gets, Dmitry S ; Makarov, Sergey V ; Bukin, Vladimir V</creatorcontrib><description>Hybrid organic-inorganic perovskites, while well examined for photovoltaic applications, remain almost completely unexplored in the terahertz (THz) range. These low-cost hybrid materials are extremely attractive for THz applications because their optoelectronic properties can be chemically engineered with relative ease. Here, we experimentally demonstrate the first attempt to apply solution-processed polycrystalline films of hybrid perovskites for the development of photoconductive terahertz emitters. By using the widely studied methylammonium-based perovskites MAPbI and MAPbBr , we fabricate and characterize large-aperture photoconductive antennas. The work presented here examines polycrystalline perovskite films excited both above and below the bandgap, as well as the scaling of THz emission with the applied bias field and the optical excitation fluence. The combination of ultrafast time-resolved spectroscopy and terahertz emission experiments allows us to determine the still-debated room temperature carrier lifetime and mobility of charge carriers in halide perovskites using an alternative noninvasive method. Our results demonstrate the applicability of hybrid perovskites for the development of scalable THz photoconductive devices, making these materials competitive with conventional semiconductors for THz emission.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano11020313</identifier><identifier>PMID: 33530450</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Antennas ; Bias ; Carrier lifetime ; Charged particles ; Competitive materials ; Current carriers ; Efficiency ; Electric fields ; Emissions ; Emitters ; Experiments ; Fluence ; Glass substrates ; hybrid organic–inorganic perovskite ; Lasers ; Optoelectronics ; perovskite ; Perovskites ; photoconductive antenna ; Photovoltaics ; Polycrystals ; pump–probe spectroscopy ; Receivers &amp; amplifiers ; Room temperature ; Scanning electron microscopy ; Semiconductors ; Spectroscopy ; terahertz ; terahertz emission</subject><ispartof>Nanomaterials (Basel, Switzerland), 2021-01, Vol.11 (2), p.313</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-2a716d288acc1b67de2ab1636729f58dd27c5069a3d8a7ff12a1ebcb76b0fe0c3</citedby><cites>FETCH-LOGICAL-c478t-2a716d288acc1b67de2ab1636729f58dd27c5069a3d8a7ff12a1ebcb76b0fe0c3</cites><orcidid>0000-0001-7773-9303 ; 0000-0002-7951-0139 ; 0000-0003-3847-6808 ; 0000-0002-4696-8143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2484041787/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2484041787?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33530450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Obraztsov, Petr A</creatorcontrib><creatorcontrib>Bulgakova, Vladislava V</creatorcontrib><creatorcontrib>Chizhov, Pavel A</creatorcontrib><creatorcontrib>Ushakov, Alexander A</creatorcontrib><creatorcontrib>Gets, Dmitry S</creatorcontrib><creatorcontrib>Makarov, Sergey V</creatorcontrib><creatorcontrib>Bukin, Vladimir V</creatorcontrib><title>Hybrid Perovskite Terahertz Photoconductive Antenna</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>Hybrid organic-inorganic perovskites, while well examined for photovoltaic applications, remain almost completely unexplored in the terahertz (THz) range. These low-cost hybrid materials are extremely attractive for THz applications because their optoelectronic properties can be chemically engineered with relative ease. Here, we experimentally demonstrate the first attempt to apply solution-processed polycrystalline films of hybrid perovskites for the development of photoconductive terahertz emitters. By using the widely studied methylammonium-based perovskites MAPbI and MAPbBr , we fabricate and characterize large-aperture photoconductive antennas. The work presented here examines polycrystalline perovskite films excited both above and below the bandgap, as well as the scaling of THz emission with the applied bias field and the optical excitation fluence. The combination of ultrafast time-resolved spectroscopy and terahertz emission experiments allows us to determine the still-debated room temperature carrier lifetime and mobility of charge carriers in halide perovskites using an alternative noninvasive method. Our results demonstrate the applicability of hybrid perovskites for the development of scalable THz photoconductive devices, making these materials competitive with conventional semiconductors for THz emission.</description><subject>Antennas</subject><subject>Bias</subject><subject>Carrier lifetime</subject><subject>Charged particles</subject><subject>Competitive materials</subject><subject>Current carriers</subject><subject>Efficiency</subject><subject>Electric fields</subject><subject>Emissions</subject><subject>Emitters</subject><subject>Experiments</subject><subject>Fluence</subject><subject>Glass substrates</subject><subject>hybrid organic–inorganic perovskite</subject><subject>Lasers</subject><subject>Optoelectronics</subject><subject>perovskite</subject><subject>Perovskites</subject><subject>photoconductive antenna</subject><subject>Photovoltaics</subject><subject>Polycrystals</subject><subject>pump–probe spectroscopy</subject><subject>Receivers &amp; amplifiers</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><subject>Semiconductors</subject><subject>Spectroscopy</subject><subject>terahertz</subject><subject>terahertz emission</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkcFrFDEUh4MottTePMuCFw-u5uVlJslFKEVtoWAP9RwyyZvurLNJTTIL7V_vrFvL1nfJI_n4eHk_xt4C_4Ro-OfoYgLggiPgC3YsuDJLaQy8POiP2Gkpaz6XAdQNvmZHiA1y2fBjhhf3XR7C4ppy2pZfQ6XFDWW3olwfFterVJNPMUy-DltanMVKMbo37FXvxkKnj-cJ-_nt6835xfLqx_fL87OrpZdK16VwCtogtHbeQ9eqQMJ10GKrhOkbHYJQvuGtcRi0U30PwgF1vlNtx3viHk_Y5d4bklvbuzxsXL63yQ3270XKt9blOviRrBZIXCknsW8kBdAyIIl5Q71R2iCfXV_2rrup21DwFGt24zPp85c4rOxt2lplQIhWzIIPj4Kcfk9Uqt0MxdM4ukhpKlZI3UKDDezQ9_-h6zTlOK9qR0kuQWk1Ux_3lM-plEz90zDA7S5cexjujL87_MAT_C9K_AMpxp73</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Obraztsov, Petr A</creator><creator>Bulgakova, Vladislava V</creator><creator>Chizhov, Pavel A</creator><creator>Ushakov, Alexander A</creator><creator>Gets, Dmitry S</creator><creator>Makarov, Sergey V</creator><creator>Bukin, Vladimir V</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7773-9303</orcidid><orcidid>https://orcid.org/0000-0002-7951-0139</orcidid><orcidid>https://orcid.org/0000-0003-3847-6808</orcidid><orcidid>https://orcid.org/0000-0002-4696-8143</orcidid></search><sort><creationdate>20210126</creationdate><title>Hybrid Perovskite Terahertz Photoconductive Antenna</title><author>Obraztsov, Petr A ; Bulgakova, Vladislava V ; Chizhov, Pavel A ; Ushakov, Alexander A ; Gets, Dmitry S ; Makarov, Sergey V ; Bukin, Vladimir V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-2a716d288acc1b67de2ab1636729f58dd27c5069a3d8a7ff12a1ebcb76b0fe0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antennas</topic><topic>Bias</topic><topic>Carrier lifetime</topic><topic>Charged particles</topic><topic>Competitive materials</topic><topic>Current carriers</topic><topic>Efficiency</topic><topic>Electric fields</topic><topic>Emissions</topic><topic>Emitters</topic><topic>Experiments</topic><topic>Fluence</topic><topic>Glass substrates</topic><topic>hybrid organic–inorganic perovskite</topic><topic>Lasers</topic><topic>Optoelectronics</topic><topic>perovskite</topic><topic>Perovskites</topic><topic>photoconductive antenna</topic><topic>Photovoltaics</topic><topic>Polycrystals</topic><topic>pump–probe spectroscopy</topic><topic>Receivers &amp; amplifiers</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><topic>Semiconductors</topic><topic>Spectroscopy</topic><topic>terahertz</topic><topic>terahertz emission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obraztsov, Petr A</creatorcontrib><creatorcontrib>Bulgakova, Vladislava V</creatorcontrib><creatorcontrib>Chizhov, Pavel A</creatorcontrib><creatorcontrib>Ushakov, Alexander A</creatorcontrib><creatorcontrib>Gets, Dmitry S</creatorcontrib><creatorcontrib>Makarov, Sergey V</creatorcontrib><creatorcontrib>Bukin, Vladimir V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obraztsov, Petr A</au><au>Bulgakova, Vladislava V</au><au>Chizhov, Pavel A</au><au>Ushakov, Alexander A</au><au>Gets, Dmitry S</au><au>Makarov, Sergey V</au><au>Bukin, Vladimir V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Perovskite Terahertz Photoconductive Antenna</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2021-01-26</date><risdate>2021</risdate><volume>11</volume><issue>2</issue><spage>313</spage><pages>313-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Hybrid organic-inorganic perovskites, while well examined for photovoltaic applications, remain almost completely unexplored in the terahertz (THz) range. These low-cost hybrid materials are extremely attractive for THz applications because their optoelectronic properties can be chemically engineered with relative ease. Here, we experimentally demonstrate the first attempt to apply solution-processed polycrystalline films of hybrid perovskites for the development of photoconductive terahertz emitters. By using the widely studied methylammonium-based perovskites MAPbI and MAPbBr , we fabricate and characterize large-aperture photoconductive antennas. The work presented here examines polycrystalline perovskite films excited both above and below the bandgap, as well as the scaling of THz emission with the applied bias field and the optical excitation fluence. The combination of ultrafast time-resolved spectroscopy and terahertz emission experiments allows us to determine the still-debated room temperature carrier lifetime and mobility of charge carriers in halide perovskites using an alternative noninvasive method. Our results demonstrate the applicability of hybrid perovskites for the development of scalable THz photoconductive devices, making these materials competitive with conventional semiconductors for THz emission.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33530450</pmid><doi>10.3390/nano11020313</doi><orcidid>https://orcid.org/0000-0001-7773-9303</orcidid><orcidid>https://orcid.org/0000-0002-7951-0139</orcidid><orcidid>https://orcid.org/0000-0003-3847-6808</orcidid><orcidid>https://orcid.org/0000-0002-4696-8143</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2021-01, Vol.11 (2), p.313
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_823e077a43f54ed184d3e2390f978930
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access)
subjects Antennas
Bias
Carrier lifetime
Charged particles
Competitive materials
Current carriers
Efficiency
Electric fields
Emissions
Emitters
Experiments
Fluence
Glass substrates
hybrid organic–inorganic perovskite
Lasers
Optoelectronics
perovskite
Perovskites
photoconductive antenna
Photovoltaics
Polycrystals
pump–probe spectroscopy
Receivers & amplifiers
Room temperature
Scanning electron microscopy
Semiconductors
Spectroscopy
terahertz
terahertz emission
title Hybrid Perovskite Terahertz Photoconductive Antenna
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Perovskite%20Terahertz%20Photoconductive%20Antenna&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Obraztsov,%20Petr%20A&rft.date=2021-01-26&rft.volume=11&rft.issue=2&rft.spage=313&rft.pages=313-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano11020313&rft_dat=%3Cproquest_doaj_%3E2486153512%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-2a716d288acc1b67de2ab1636729f58dd27c5069a3d8a7ff12a1ebcb76b0fe0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2484041787&rft_id=info:pmid/33530450&rfr_iscdi=true