Loading…

Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data

•SVMs classified 6 versus 12 month-old infants above chance based on fcMRI data alone.•We carefully accounted for the effects of fcMRI motion artifact.•These results coincide with a period of dramatic change in infant development.•Two interpretations about connections supporting this age categorizat...

Full description

Saved in:
Bibliographic Details
Published in:Developmental cognitive neuroscience 2015-04, Vol.12 (C), p.123-133
Main Authors: Pruett, John R., Kandala, Sridhar, Hoertel, Sarah, Snyder, Abraham Z., Elison, Jed T., Nishino, Tomoyuki, Feczko, Eric, Dosenbach, Nico U.F., Nardos, Binyam, Power, Jonathan D., Adeyemo, Babatunde, Botteron, Kelly N., McKinstry, Robert C., Evans, Alan C., Hazlett, Heather C., Dager, Stephen R., Paterson, Sarah, Schultz, Robert T., Collins, D. Louis, Fonov, Vladimir S., Styner, Martin, Gerig, Guido, Das, Samir, Kostopoulos, Penelope, Constantino, John N., Estes, Annette M., Petersen, Steven E., Schlaggar, Bradley L., Piven, Joseph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-ed3cbf6d854f3bb27b813f4a2df33705e37039bfd754d0211c12702a494bf7a43
cites cdi_FETCH-LOGICAL-c517t-ed3cbf6d854f3bb27b813f4a2df33705e37039bfd754d0211c12702a494bf7a43
container_end_page 133
container_issue C
container_start_page 123
container_title Developmental cognitive neuroscience
container_volume 12
creator Pruett, John R.
Kandala, Sridhar
Hoertel, Sarah
Snyder, Abraham Z.
Elison, Jed T.
Nishino, Tomoyuki
Feczko, Eric
Dosenbach, Nico U.F.
Nardos, Binyam
Power, Jonathan D.
Adeyemo, Babatunde
Botteron, Kelly N.
McKinstry, Robert C.
Evans, Alan C.
Hazlett, Heather C.
Dager, Stephen R.
Paterson, Sarah
Schultz, Robert T.
Collins, D. Louis
Fonov, Vladimir S.
Styner, Martin
Gerig, Guido
Das, Samir
Kostopoulos, Penelope
Constantino, John N.
Estes, Annette M.
Petersen, Steven E.
Schlaggar, Bradley L.
Piven, Joseph
description •SVMs classified 6 versus 12 month-old infants above chance based on fcMRI data alone.•We carefully accounted for the effects of fcMRI motion artifact.•These results coincide with a period of dramatic change in infant development.•Two interpretations about connections supporting this age categorization are given. Human large-scale functional brain networks are hypothesized to undergo significant changes over development. Little is known about these functional architectural changes, particularly during the second half of the first year of life. We used multivariate pattern classification of resting-state functional connectivity magnetic resonance imaging (fcMRI) data obtained in an on-going, multi-site, longitudinal study of brain and behavioral development to explore whether fcMRI data contained information sufficient to classify infant age. Analyses carefully account for the effects of fcMRI motion artifact. Support vector machines (SVMs) classified 6 versus 12 month-old infants (128 datasets) above chance based on fcMRI data alone. Results demonstrate significant changes in measures of brain functional organization that coincide with a special period of dramatic change in infant motor, cognitive, and social development. Explorations of the most different correlations used for SVM lead to two different interpretations about functional connections that support 6 versus 12-month age categorization.
doi_str_mv 10.1016/j.dcn.2015.01.003
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8280402f2e0e4aa0b9fefcb9be2ad0f1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878929315000171</els_id><doaj_id>oai_doaj_org_article_8280402f2e0e4aa0b9fefcb9be2ad0f1</doaj_id><sourcerecordid>1669833015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-ed3cbf6d854f3bb27b813f4a2df33705e37039bfd754d0211c12702a494bf7a43</originalsourceid><addsrcrecordid>eNp9UstuFDEQHCEQiUI-gAvykcts_JqXkJCiCEikSFzgbLXt9sarWTvYsyvlD_hsetkkIhd88KO7qtzq6qZ5L_hKcNFfbFbepZXkoltxseJcvWpOxTiM7aT48PrpLid10pzXuuG01NRLLd82J7IbuJbjeNr8vnRuV2BBBmtkboZaY4gOlpgTy4H1DJJnQrJtTstdm2fPYgqQlsosVPSMYAXrEtO6rctBJ-ySO7BhZi6nhPTYx-WBbWGdcInuAKdscsgixYjIPCzwrnkTYK54_nieNT-_fvlxdd3efv92c3V527pODEuLXjkbej92Oihr5WBHoYIG6YNSA--QNjXZ4IdOey6FcEIOXIKetA0DaHXW3Bx1fYaNuS9UQ3kwGaL5G8hlbaBQmTOaUY5ccxkkctQA3E4Bg7OTRQmeB0Fan49a9zu7Re8wLQXmF6IvMynemXXeG62ofqlI4OOjQMm_dtRGs43V4TxDwryrRvT9NCpFHhNUHKGu5FoLhudvBDeHgTAbQwNhDgNhuDDkNnE-_FvfM-PJfgJ8OgKQOr6PWEx1EckaHwsZRy2J_5H_AyVtyTA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669833015</pqid></control><display><type>article</type><title>Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data</title><source>ScienceDirect Journals</source><source>PubMed Central</source><creator>Pruett, John R. ; Kandala, Sridhar ; Hoertel, Sarah ; Snyder, Abraham Z. ; Elison, Jed T. ; Nishino, Tomoyuki ; Feczko, Eric ; Dosenbach, Nico U.F. ; Nardos, Binyam ; Power, Jonathan D. ; Adeyemo, Babatunde ; Botteron, Kelly N. ; McKinstry, Robert C. ; Evans, Alan C. ; Hazlett, Heather C. ; Dager, Stephen R. ; Paterson, Sarah ; Schultz, Robert T. ; Collins, D. Louis ; Fonov, Vladimir S. ; Styner, Martin ; Gerig, Guido ; Das, Samir ; Kostopoulos, Penelope ; Constantino, John N. ; Estes, Annette M. ; Petersen, Steven E. ; Schlaggar, Bradley L. ; Piven, Joseph</creator><creatorcontrib>Pruett, John R. ; Kandala, Sridhar ; Hoertel, Sarah ; Snyder, Abraham Z. ; Elison, Jed T. ; Nishino, Tomoyuki ; Feczko, Eric ; Dosenbach, Nico U.F. ; Nardos, Binyam ; Power, Jonathan D. ; Adeyemo, Babatunde ; Botteron, Kelly N. ; McKinstry, Robert C. ; Evans, Alan C. ; Hazlett, Heather C. ; Dager, Stephen R. ; Paterson, Sarah ; Schultz, Robert T. ; Collins, D. Louis ; Fonov, Vladimir S. ; Styner, Martin ; Gerig, Guido ; Das, Samir ; Kostopoulos, Penelope ; Constantino, John N. ; Estes, Annette M. ; Petersen, Steven E. ; Schlaggar, Bradley L. ; Piven, Joseph ; The IBIS Network ; IBIS Network</creatorcontrib><description>•SVMs classified 6 versus 12 month-old infants above chance based on fcMRI data alone.•We carefully accounted for the effects of fcMRI motion artifact.•These results coincide with a period of dramatic change in infant development.•Two interpretations about connections supporting this age categorization are given. Human large-scale functional brain networks are hypothesized to undergo significant changes over development. Little is known about these functional architectural changes, particularly during the second half of the first year of life. We used multivariate pattern classification of resting-state functional connectivity magnetic resonance imaging (fcMRI) data obtained in an on-going, multi-site, longitudinal study of brain and behavioral development to explore whether fcMRI data contained information sufficient to classify infant age. Analyses carefully account for the effects of fcMRI motion artifact. Support vector machines (SVMs) classified 6 versus 12 month-old infants (128 datasets) above chance based on fcMRI data alone. Results demonstrate significant changes in measures of brain functional organization that coincide with a special period of dramatic change in infant motor, cognitive, and social development. Explorations of the most different correlations used for SVM lead to two different interpretations about functional connections that support 6 versus 12-month age categorization.</description><identifier>ISSN: 1878-9293</identifier><identifier>EISSN: 1878-9307</identifier><identifier>DOI: 10.1016/j.dcn.2015.01.003</identifier><identifier>PMID: 25704288</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Age Factors ; Brain - anatomy &amp; histology ; Brain - physiology ; Child Development Disorders, Pervasive - diagnosis ; Child Development Disorders, Pervasive - genetics ; Development ; Female ; Functional brain networks ; Functional connectivity magnetic resonance imaging (fcMRI) ; Humans ; Infant ; Longitudinal Studies ; Magnetic Resonance Imaging ; Male ; Multivariate pattern analysis (MVPA) ; Original Research ; Risk Assessment ; Support vector machine (SVM)</subject><ispartof>Developmental cognitive neuroscience, 2015-04, Vol.12 (C), p.123-133</ispartof><rights>2015 The Authors</rights><rights>Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2015 The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-ed3cbf6d854f3bb27b813f4a2df33705e37039bfd754d0211c12702a494bf7a43</citedby><cites>FETCH-LOGICAL-c517t-ed3cbf6d854f3bb27b813f4a2df33705e37039bfd754d0211c12702a494bf7a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385423/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1878929315000171$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25704288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pruett, John R.</creatorcontrib><creatorcontrib>Kandala, Sridhar</creatorcontrib><creatorcontrib>Hoertel, Sarah</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Elison, Jed T.</creatorcontrib><creatorcontrib>Nishino, Tomoyuki</creatorcontrib><creatorcontrib>Feczko, Eric</creatorcontrib><creatorcontrib>Dosenbach, Nico U.F.</creatorcontrib><creatorcontrib>Nardos, Binyam</creatorcontrib><creatorcontrib>Power, Jonathan D.</creatorcontrib><creatorcontrib>Adeyemo, Babatunde</creatorcontrib><creatorcontrib>Botteron, Kelly N.</creatorcontrib><creatorcontrib>McKinstry, Robert C.</creatorcontrib><creatorcontrib>Evans, Alan C.</creatorcontrib><creatorcontrib>Hazlett, Heather C.</creatorcontrib><creatorcontrib>Dager, Stephen R.</creatorcontrib><creatorcontrib>Paterson, Sarah</creatorcontrib><creatorcontrib>Schultz, Robert T.</creatorcontrib><creatorcontrib>Collins, D. Louis</creatorcontrib><creatorcontrib>Fonov, Vladimir S.</creatorcontrib><creatorcontrib>Styner, Martin</creatorcontrib><creatorcontrib>Gerig, Guido</creatorcontrib><creatorcontrib>Das, Samir</creatorcontrib><creatorcontrib>Kostopoulos, Penelope</creatorcontrib><creatorcontrib>Constantino, John N.</creatorcontrib><creatorcontrib>Estes, Annette M.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Piven, Joseph</creatorcontrib><creatorcontrib>The IBIS Network</creatorcontrib><creatorcontrib>IBIS Network</creatorcontrib><title>Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data</title><title>Developmental cognitive neuroscience</title><addtitle>Dev Cogn Neurosci</addtitle><description>•SVMs classified 6 versus 12 month-old infants above chance based on fcMRI data alone.•We carefully accounted for the effects of fcMRI motion artifact.•These results coincide with a period of dramatic change in infant development.•Two interpretations about connections supporting this age categorization are given. Human large-scale functional brain networks are hypothesized to undergo significant changes over development. Little is known about these functional architectural changes, particularly during the second half of the first year of life. We used multivariate pattern classification of resting-state functional connectivity magnetic resonance imaging (fcMRI) data obtained in an on-going, multi-site, longitudinal study of brain and behavioral development to explore whether fcMRI data contained information sufficient to classify infant age. Analyses carefully account for the effects of fcMRI motion artifact. Support vector machines (SVMs) classified 6 versus 12 month-old infants (128 datasets) above chance based on fcMRI data alone. Results demonstrate significant changes in measures of brain functional organization that coincide with a special period of dramatic change in infant motor, cognitive, and social development. Explorations of the most different correlations used for SVM lead to two different interpretations about functional connections that support 6 versus 12-month age categorization.</description><subject>Age Factors</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - physiology</subject><subject>Child Development Disorders, Pervasive - diagnosis</subject><subject>Child Development Disorders, Pervasive - genetics</subject><subject>Development</subject><subject>Female</subject><subject>Functional brain networks</subject><subject>Functional connectivity magnetic resonance imaging (fcMRI)</subject><subject>Humans</subject><subject>Infant</subject><subject>Longitudinal Studies</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Multivariate pattern analysis (MVPA)</subject><subject>Original Research</subject><subject>Risk Assessment</subject><subject>Support vector machine (SVM)</subject><issn>1878-9293</issn><issn>1878-9307</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UstuFDEQHCEQiUI-gAvykcts_JqXkJCiCEikSFzgbLXt9sarWTvYsyvlD_hsetkkIhd88KO7qtzq6qZ5L_hKcNFfbFbepZXkoltxseJcvWpOxTiM7aT48PrpLid10pzXuuG01NRLLd82J7IbuJbjeNr8vnRuV2BBBmtkboZaY4gOlpgTy4H1DJJnQrJtTstdm2fPYgqQlsosVPSMYAXrEtO6rctBJ-ySO7BhZi6nhPTYx-WBbWGdcInuAKdscsgixYjIPCzwrnkTYK54_nieNT-_fvlxdd3efv92c3V527pODEuLXjkbej92Oihr5WBHoYIG6YNSA--QNjXZ4IdOey6FcEIOXIKetA0DaHXW3Bx1fYaNuS9UQ3kwGaL5G8hlbaBQmTOaUY5ccxkkctQA3E4Bg7OTRQmeB0Fan49a9zu7Re8wLQXmF6IvMynemXXeG62ofqlI4OOjQMm_dtRGs43V4TxDwryrRvT9NCpFHhNUHKGu5FoLhudvBDeHgTAbQwNhDgNhuDDkNnE-_FvfM-PJfgJ8OgKQOr6PWEx1EckaHwsZRy2J_5H_AyVtyTA</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Pruett, John R.</creator><creator>Kandala, Sridhar</creator><creator>Hoertel, Sarah</creator><creator>Snyder, Abraham Z.</creator><creator>Elison, Jed T.</creator><creator>Nishino, Tomoyuki</creator><creator>Feczko, Eric</creator><creator>Dosenbach, Nico U.F.</creator><creator>Nardos, Binyam</creator><creator>Power, Jonathan D.</creator><creator>Adeyemo, Babatunde</creator><creator>Botteron, Kelly N.</creator><creator>McKinstry, Robert C.</creator><creator>Evans, Alan C.</creator><creator>Hazlett, Heather C.</creator><creator>Dager, Stephen R.</creator><creator>Paterson, Sarah</creator><creator>Schultz, Robert T.</creator><creator>Collins, D. Louis</creator><creator>Fonov, Vladimir S.</creator><creator>Styner, Martin</creator><creator>Gerig, Guido</creator><creator>Das, Samir</creator><creator>Kostopoulos, Penelope</creator><creator>Constantino, John N.</creator><creator>Estes, Annette M.</creator><creator>Petersen, Steven E.</creator><creator>Schlaggar, Bradley L.</creator><creator>Piven, Joseph</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150401</creationdate><title>Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data</title><author>Pruett, John R. ; Kandala, Sridhar ; Hoertel, Sarah ; Snyder, Abraham Z. ; Elison, Jed T. ; Nishino, Tomoyuki ; Feczko, Eric ; Dosenbach, Nico U.F. ; Nardos, Binyam ; Power, Jonathan D. ; Adeyemo, Babatunde ; Botteron, Kelly N. ; McKinstry, Robert C. ; Evans, Alan C. ; Hazlett, Heather C. ; Dager, Stephen R. ; Paterson, Sarah ; Schultz, Robert T. ; Collins, D. Louis ; Fonov, Vladimir S. ; Styner, Martin ; Gerig, Guido ; Das, Samir ; Kostopoulos, Penelope ; Constantino, John N. ; Estes, Annette M. ; Petersen, Steven E. ; Schlaggar, Bradley L. ; Piven, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-ed3cbf6d854f3bb27b813f4a2df33705e37039bfd754d0211c12702a494bf7a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Age Factors</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - physiology</topic><topic>Child Development Disorders, Pervasive - diagnosis</topic><topic>Child Development Disorders, Pervasive - genetics</topic><topic>Development</topic><topic>Female</topic><topic>Functional brain networks</topic><topic>Functional connectivity magnetic resonance imaging (fcMRI)</topic><topic>Humans</topic><topic>Infant</topic><topic>Longitudinal Studies</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Multivariate pattern analysis (MVPA)</topic><topic>Original Research</topic><topic>Risk Assessment</topic><topic>Support vector machine (SVM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pruett, John R.</creatorcontrib><creatorcontrib>Kandala, Sridhar</creatorcontrib><creatorcontrib>Hoertel, Sarah</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Elison, Jed T.</creatorcontrib><creatorcontrib>Nishino, Tomoyuki</creatorcontrib><creatorcontrib>Feczko, Eric</creatorcontrib><creatorcontrib>Dosenbach, Nico U.F.</creatorcontrib><creatorcontrib>Nardos, Binyam</creatorcontrib><creatorcontrib>Power, Jonathan D.</creatorcontrib><creatorcontrib>Adeyemo, Babatunde</creatorcontrib><creatorcontrib>Botteron, Kelly N.</creatorcontrib><creatorcontrib>McKinstry, Robert C.</creatorcontrib><creatorcontrib>Evans, Alan C.</creatorcontrib><creatorcontrib>Hazlett, Heather C.</creatorcontrib><creatorcontrib>Dager, Stephen R.</creatorcontrib><creatorcontrib>Paterson, Sarah</creatorcontrib><creatorcontrib>Schultz, Robert T.</creatorcontrib><creatorcontrib>Collins, D. Louis</creatorcontrib><creatorcontrib>Fonov, Vladimir S.</creatorcontrib><creatorcontrib>Styner, Martin</creatorcontrib><creatorcontrib>Gerig, Guido</creatorcontrib><creatorcontrib>Das, Samir</creatorcontrib><creatorcontrib>Kostopoulos, Penelope</creatorcontrib><creatorcontrib>Constantino, John N.</creatorcontrib><creatorcontrib>Estes, Annette M.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Piven, Joseph</creatorcontrib><creatorcontrib>The IBIS Network</creatorcontrib><creatorcontrib>IBIS Network</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Developmental cognitive neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pruett, John R.</au><au>Kandala, Sridhar</au><au>Hoertel, Sarah</au><au>Snyder, Abraham Z.</au><au>Elison, Jed T.</au><au>Nishino, Tomoyuki</au><au>Feczko, Eric</au><au>Dosenbach, Nico U.F.</au><au>Nardos, Binyam</au><au>Power, Jonathan D.</au><au>Adeyemo, Babatunde</au><au>Botteron, Kelly N.</au><au>McKinstry, Robert C.</au><au>Evans, Alan C.</au><au>Hazlett, Heather C.</au><au>Dager, Stephen R.</au><au>Paterson, Sarah</au><au>Schultz, Robert T.</au><au>Collins, D. Louis</au><au>Fonov, Vladimir S.</au><au>Styner, Martin</au><au>Gerig, Guido</au><au>Das, Samir</au><au>Kostopoulos, Penelope</au><au>Constantino, John N.</au><au>Estes, Annette M.</au><au>Petersen, Steven E.</au><au>Schlaggar, Bradley L.</au><au>Piven, Joseph</au><aucorp>The IBIS Network</aucorp><aucorp>IBIS Network</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data</atitle><jtitle>Developmental cognitive neuroscience</jtitle><addtitle>Dev Cogn Neurosci</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>12</volume><issue>C</issue><spage>123</spage><epage>133</epage><pages>123-133</pages><issn>1878-9293</issn><eissn>1878-9307</eissn><abstract>•SVMs classified 6 versus 12 month-old infants above chance based on fcMRI data alone.•We carefully accounted for the effects of fcMRI motion artifact.•These results coincide with a period of dramatic change in infant development.•Two interpretations about connections supporting this age categorization are given. Human large-scale functional brain networks are hypothesized to undergo significant changes over development. Little is known about these functional architectural changes, particularly during the second half of the first year of life. We used multivariate pattern classification of resting-state functional connectivity magnetic resonance imaging (fcMRI) data obtained in an on-going, multi-site, longitudinal study of brain and behavioral development to explore whether fcMRI data contained information sufficient to classify infant age. Analyses carefully account for the effects of fcMRI motion artifact. Support vector machines (SVMs) classified 6 versus 12 month-old infants (128 datasets) above chance based on fcMRI data alone. Results demonstrate significant changes in measures of brain functional organization that coincide with a special period of dramatic change in infant motor, cognitive, and social development. Explorations of the most different correlations used for SVM lead to two different interpretations about functional connections that support 6 versus 12-month age categorization.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25704288</pmid><doi>10.1016/j.dcn.2015.01.003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1878-9293
ispartof Developmental cognitive neuroscience, 2015-04, Vol.12 (C), p.123-133
issn 1878-9293
1878-9307
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8280402f2e0e4aa0b9fefcb9be2ad0f1
source ScienceDirect Journals; PubMed Central
subjects Age Factors
Brain - anatomy & histology
Brain - physiology
Child Development Disorders, Pervasive - diagnosis
Child Development Disorders, Pervasive - genetics
Development
Female
Functional brain networks
Functional connectivity magnetic resonance imaging (fcMRI)
Humans
Infant
Longitudinal Studies
Magnetic Resonance Imaging
Male
Multivariate pattern analysis (MVPA)
Original Research
Risk Assessment
Support vector machine (SVM)
title Accurate age classification of 6 and 12 month-old infants based on resting-state functional connectivity magnetic resonance imaging data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20age%20classification%20of%206%20and%2012%20month-old%20infants%20based%20on%20resting-state%20functional%20connectivity%20magnetic%20resonance%20imaging%20data&rft.jtitle=Developmental%20cognitive%20neuroscience&rft.au=Pruett,%20John%20R.&rft.aucorp=The%20IBIS%20Network&rft.date=2015-04-01&rft.volume=12&rft.issue=C&rft.spage=123&rft.epage=133&rft.pages=123-133&rft.issn=1878-9293&rft.eissn=1878-9307&rft_id=info:doi/10.1016/j.dcn.2015.01.003&rft_dat=%3Cproquest_doaj_%3E1669833015%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-ed3cbf6d854f3bb27b813f4a2df33705e37039bfd754d0211c12702a494bf7a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669833015&rft_id=info:pmid/25704288&rfr_iscdi=true