Loading…

A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding

Remote sensing (RS) of plant canopies permits non-intrusive, high-throughput monitoring of plant physiological characteristics. This study compared three RS approaches using a low flying UAV (unmanned aerial vehicle), with that of proximal sensing, and satellite-based imagery. Two physiological trai...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science 2016-08, Vol.7, p.1131-1131
Main Authors: Tattaris, Maria, Reynolds, Matthew P, Chapman, Scott C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Remote sensing (RS) of plant canopies permits non-intrusive, high-throughput monitoring of plant physiological characteristics. This study compared three RS approaches using a low flying UAV (unmanned aerial vehicle), with that of proximal sensing, and satellite-based imagery. Two physiological traits were considered, canopy temperature (CT) and a vegetation index (NDVI), to determine the most viable approaches for large scale crop genetic improvement. The UAV-based platform achieves plot-level resolution while measuring several hundred plots in one mission via high-resolution thermal and multispectral imagery measured at altitudes of 30-100 m. The satellite measures multispectral imagery from an altitude of 770 km. Information was compared with proximal measurements using IR thermometers and an NDVI sensor at a distance of 0.5-1 m above plots. For robust comparisons, CT and NDVI were assessed on panels of elite cultivars under irrigated and drought conditions, in different thermal regimes, and on un-adapted genetic resources under water deficit. Correlations between airborne data and yield/biomass at maturity were generally higher than equivalent proximal correlations. NDVI was derived from high-resolution satellite imagery for only larger sized plots (8.5 Ă— 2.4 m) due to restricted pixel density. Results support use of UAV-based RS techniques for high-throughput phenotyping for both precision and efficiency.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2016.01131