Loading…
Human-centred physical neuromorphics with visual brain-computer interfaces
Steady-state visual evoked potentials (SSVEPs) are widely used for brain-computer interfaces (BCIs) as they provide a stable and efficient means to connect the computer to the brain with a simple flickering light. Previous studies focused on low-density frequency division multiplexing techniques, i....
Saved in:
Published in: | Nature communications 2024-07, Vol.15 (1), p.6393-8, Article 6393 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-5e467ea08f2bade816abb19e389214e01b0222e6918c5818214fba6caa906e293 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 6393 |
container_title | Nature communications |
container_volume | 15 |
creator | Wang, Gao Marcucci, Giulia Peters, Benjamin Braidotti, Maria Chiara Muckli, Lars Faccio, Daniele |
description | Steady-state visual evoked potentials (SSVEPs) are widely used for brain-computer interfaces (BCIs) as they provide a stable and efficient means to connect the computer to the brain with a simple flickering light. Previous studies focused on low-density frequency division multiplexing techniques, i.e. typically employing one or two light-modulation frequencies during a single flickering light stimulation. Here we show that it is possible to encode information in SSVEPs excited by high-density frequency division multiplexing, involving hundreds of frequencies. We then demonstrate the ability to transmit entire images from the computer to the brain/EEG read-out in relatively short times. High-density frequency multiplexing also allows to implement a photonic neural network utilizing SSVEPs, that is applied to simple classification tasks and exhibits promising scalability properties by connecting multiple brains in series. Our findings open up new possibilities for the field of neural interfaces, holding potential for various applications, including assistive technologies and cognitive enhancements, to further improve human-machine interactions.
Steady state visually evoked potentials enable EEG vision-based brain computer interfaces. We show that it is possible to encode information distributed across 100+ frequencies. We encode images and perform simple physical computing classification tasks. Connecting more than one in brain in series improves the classification capability. |
doi_str_mv | 10.1038/s41467-024-50775-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_829cbf60bac246ada46458153dd94baf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_829cbf60bac246ada46458153dd94baf</doaj_id><sourcerecordid>3086183590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-5e467ea08f2bade816abb19e389214e01b0222e6918c5818214fba6caa906e293</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERavSP9ADisSFS8Bf8donhCqgRZW4tGdr7Ex2vUriYCdF_feYTSktB3ywrZl3Ho_nJeSc0feMCv0hSybVpqZc1g3dbJqavyAnnEpWsw0XL5_cj8lZzntaljBMS_mKHAtDNRWMn5Bvl8sAY-1xnBO21bS7z8FDX424pDjENO2Cz9XPMO-qu5CXknEJQimIw7TMmKowlr0Dj_k1Oeqgz3j2cJ6S2y-fby4u6-vvX68uPl3XXnI-1w2WvhGo7riDFjVT4BwzKLThTCJljnLOUZVefaOZLsHOgfIAhirkRpySq5XbRtjbKYUB0r2NEOwhENPWQpqD79FqbrzrFHXguVTQglSyMBvRtkY66Arr48qaFjdgexgD9M-gzzNj2NltvLOMcW2EZoXw7oGQ4o8F82yHkD32PYwYl2wF1UqUPrQo0rf_SPdxSWOZ1UHFtGgMLSq-qnyKOSfsHrth1P623q7W22K9PVhveSl68_QfjyV_jC4CsQpySY1bTH_f_g_2Fx74uf8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086183590</pqid></control><display><type>article</type><title>Human-centred physical neuromorphics with visual brain-computer interfaces</title><source>Nature_系列刊</source><source>PubMed Central (Open Access)</source><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Gao ; Marcucci, Giulia ; Peters, Benjamin ; Braidotti, Maria Chiara ; Muckli, Lars ; Faccio, Daniele</creator><creatorcontrib>Wang, Gao ; Marcucci, Giulia ; Peters, Benjamin ; Braidotti, Maria Chiara ; Muckli, Lars ; Faccio, Daniele</creatorcontrib><description>Steady-state visual evoked potentials (SSVEPs) are widely used for brain-computer interfaces (BCIs) as they provide a stable and efficient means to connect the computer to the brain with a simple flickering light. Previous studies focused on low-density frequency division multiplexing techniques, i.e. typically employing one or two light-modulation frequencies during a single flickering light stimulation. Here we show that it is possible to encode information in SSVEPs excited by high-density frequency division multiplexing, involving hundreds of frequencies. We then demonstrate the ability to transmit entire images from the computer to the brain/EEG read-out in relatively short times. High-density frequency multiplexing also allows to implement a photonic neural network utilizing SSVEPs, that is applied to simple classification tasks and exhibits promising scalability properties by connecting multiple brains in series. Our findings open up new possibilities for the field of neural interfaces, holding potential for various applications, including assistive technologies and cognitive enhancements, to further improve human-machine interactions.
Steady state visually evoked potentials enable EEG vision-based brain computer interfaces. We show that it is possible to encode information distributed across 100+ frequencies. We encode images and perform simple physical computing classification tasks. Connecting more than one in brain in series improves the classification capability.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-50775-2</identifier><identifier>PMID: 39080312</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/2613/2615 ; 639/624/1107/510 ; 639/705/258 ; Adult ; Brain ; Brain - physiology ; Brain-Computer Interfaces ; Classification ; Cognitive tasks ; EEG ; Electroencephalography ; Evoked potentials ; Evoked Potentials, Visual - physiology ; Female ; Frequency division multiplexing ; High density ; Human-computer interface ; Humanities and Social Sciences ; Humans ; Information processing ; Interfaces ; Male ; Man-machine interfaces ; multidisciplinary ; Neural networks ; Neural Networks, Computer ; Photic Stimulation ; Science ; Science (multidisciplinary) ; Sensory stimulation ; Steady state ; Visual evoked potentials ; Young Adult</subject><ispartof>Nature communications, 2024-07, Vol.15 (1), p.6393-8, Article 6393</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-5e467ea08f2bade816abb19e389214e01b0222e6918c5818214fba6caa906e293</cites><orcidid>0000-0003-1941-5161 ; 0000-0002-0948-8976 ; 0000-0002-0143-4324 ; 0000-0002-6746-792X ; 0000-0001-8397-334X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3086183590/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3086183590?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39080312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Gao</creatorcontrib><creatorcontrib>Marcucci, Giulia</creatorcontrib><creatorcontrib>Peters, Benjamin</creatorcontrib><creatorcontrib>Braidotti, Maria Chiara</creatorcontrib><creatorcontrib>Muckli, Lars</creatorcontrib><creatorcontrib>Faccio, Daniele</creatorcontrib><title>Human-centred physical neuromorphics with visual brain-computer interfaces</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Steady-state visual evoked potentials (SSVEPs) are widely used for brain-computer interfaces (BCIs) as they provide a stable and efficient means to connect the computer to the brain with a simple flickering light. Previous studies focused on low-density frequency division multiplexing techniques, i.e. typically employing one or two light-modulation frequencies during a single flickering light stimulation. Here we show that it is possible to encode information in SSVEPs excited by high-density frequency division multiplexing, involving hundreds of frequencies. We then demonstrate the ability to transmit entire images from the computer to the brain/EEG read-out in relatively short times. High-density frequency multiplexing also allows to implement a photonic neural network utilizing SSVEPs, that is applied to simple classification tasks and exhibits promising scalability properties by connecting multiple brains in series. Our findings open up new possibilities for the field of neural interfaces, holding potential for various applications, including assistive technologies and cognitive enhancements, to further improve human-machine interactions.
Steady state visually evoked potentials enable EEG vision-based brain computer interfaces. We show that it is possible to encode information distributed across 100+ frequencies. We encode images and perform simple physical computing classification tasks. Connecting more than one in brain in series improves the classification capability.</description><subject>631/378/2613/2615</subject><subject>639/624/1107/510</subject><subject>639/705/258</subject><subject>Adult</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain-Computer Interfaces</subject><subject>Classification</subject><subject>Cognitive tasks</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Evoked potentials</subject><subject>Evoked Potentials, Visual - physiology</subject><subject>Female</subject><subject>Frequency division multiplexing</subject><subject>High density</subject><subject>Human-computer interface</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Information processing</subject><subject>Interfaces</subject><subject>Male</subject><subject>Man-machine interfaces</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Photic Stimulation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensory stimulation</subject><subject>Steady state</subject><subject>Visual evoked potentials</subject><subject>Young Adult</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi1ERavSP9ADisSFS8Bf8donhCqgRZW4tGdr7Ex2vUriYCdF_feYTSktB3ywrZl3Ho_nJeSc0feMCv0hSybVpqZc1g3dbJqavyAnnEpWsw0XL5_cj8lZzntaljBMS_mKHAtDNRWMn5Bvl8sAY-1xnBO21bS7z8FDX424pDjENO2Cz9XPMO-qu5CXknEJQimIw7TMmKowlr0Dj_k1Oeqgz3j2cJ6S2y-fby4u6-vvX68uPl3XXnI-1w2WvhGo7riDFjVT4BwzKLThTCJljnLOUZVefaOZLsHOgfIAhirkRpySq5XbRtjbKYUB0r2NEOwhENPWQpqD79FqbrzrFHXguVTQglSyMBvRtkY66Arr48qaFjdgexgD9M-gzzNj2NltvLOMcW2EZoXw7oGQ4o8F82yHkD32PYwYl2wF1UqUPrQo0rf_SPdxSWOZ1UHFtGgMLSq-qnyKOSfsHrth1P623q7W22K9PVhveSl68_QfjyV_jC4CsQpySY1bTH_f_g_2Fx74uf8</recordid><startdate>20240729</startdate><enddate>20240729</enddate><creator>Wang, Gao</creator><creator>Marcucci, Giulia</creator><creator>Peters, Benjamin</creator><creator>Braidotti, Maria Chiara</creator><creator>Muckli, Lars</creator><creator>Faccio, Daniele</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1941-5161</orcidid><orcidid>https://orcid.org/0000-0002-0948-8976</orcidid><orcidid>https://orcid.org/0000-0002-0143-4324</orcidid><orcidid>https://orcid.org/0000-0002-6746-792X</orcidid><orcidid>https://orcid.org/0000-0001-8397-334X</orcidid></search><sort><creationdate>20240729</creationdate><title>Human-centred physical neuromorphics with visual brain-computer interfaces</title><author>Wang, Gao ; Marcucci, Giulia ; Peters, Benjamin ; Braidotti, Maria Chiara ; Muckli, Lars ; Faccio, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-5e467ea08f2bade816abb19e389214e01b0222e6918c5818214fba6caa906e293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/378/2613/2615</topic><topic>639/624/1107/510</topic><topic>639/705/258</topic><topic>Adult</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain-Computer Interfaces</topic><topic>Classification</topic><topic>Cognitive tasks</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Evoked potentials</topic><topic>Evoked Potentials, Visual - physiology</topic><topic>Female</topic><topic>Frequency division multiplexing</topic><topic>High density</topic><topic>Human-computer interface</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Information processing</topic><topic>Interfaces</topic><topic>Male</topic><topic>Man-machine interfaces</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Photic Stimulation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensory stimulation</topic><topic>Steady state</topic><topic>Visual evoked potentials</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gao</creatorcontrib><creatorcontrib>Marcucci, Giulia</creatorcontrib><creatorcontrib>Peters, Benjamin</creatorcontrib><creatorcontrib>Braidotti, Maria Chiara</creatorcontrib><creatorcontrib>Muckli, Lars</creatorcontrib><creatorcontrib>Faccio, Daniele</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gao</au><au>Marcucci, Giulia</au><au>Peters, Benjamin</au><au>Braidotti, Maria Chiara</au><au>Muckli, Lars</au><au>Faccio, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human-centred physical neuromorphics with visual brain-computer interfaces</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-07-29</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>6393</spage><epage>8</epage><pages>6393-8</pages><artnum>6393</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Steady-state visual evoked potentials (SSVEPs) are widely used for brain-computer interfaces (BCIs) as they provide a stable and efficient means to connect the computer to the brain with a simple flickering light. Previous studies focused on low-density frequency division multiplexing techniques, i.e. typically employing one or two light-modulation frequencies during a single flickering light stimulation. Here we show that it is possible to encode information in SSVEPs excited by high-density frequency division multiplexing, involving hundreds of frequencies. We then demonstrate the ability to transmit entire images from the computer to the brain/EEG read-out in relatively short times. High-density frequency multiplexing also allows to implement a photonic neural network utilizing SSVEPs, that is applied to simple classification tasks and exhibits promising scalability properties by connecting multiple brains in series. Our findings open up new possibilities for the field of neural interfaces, holding potential for various applications, including assistive technologies and cognitive enhancements, to further improve human-machine interactions.
Steady state visually evoked potentials enable EEG vision-based brain computer interfaces. We show that it is possible to encode information distributed across 100+ frequencies. We encode images and perform simple physical computing classification tasks. Connecting more than one in brain in series improves the classification capability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39080312</pmid><doi>10.1038/s41467-024-50775-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1941-5161</orcidid><orcidid>https://orcid.org/0000-0002-0948-8976</orcidid><orcidid>https://orcid.org/0000-0002-0143-4324</orcidid><orcidid>https://orcid.org/0000-0002-6746-792X</orcidid><orcidid>https://orcid.org/0000-0001-8397-334X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-07, Vol.15 (1), p.6393-8, Article 6393 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_829cbf60bac246ada46458153dd94baf |
source | Nature_系列刊; PubMed Central (Open Access); ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/378/2613/2615 639/624/1107/510 639/705/258 Adult Brain Brain - physiology Brain-Computer Interfaces Classification Cognitive tasks EEG Electroencephalography Evoked potentials Evoked Potentials, Visual - physiology Female Frequency division multiplexing High density Human-computer interface Humanities and Social Sciences Humans Information processing Interfaces Male Man-machine interfaces multidisciplinary Neural networks Neural Networks, Computer Photic Stimulation Science Science (multidisciplinary) Sensory stimulation Steady state Visual evoked potentials Young Adult |
title | Human-centred physical neuromorphics with visual brain-computer interfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human-centred%20physical%20neuromorphics%20with%20visual%20brain-computer%20interfaces&rft.jtitle=Nature%20communications&rft.au=Wang,%20Gao&rft.date=2024-07-29&rft.volume=15&rft.issue=1&rft.spage=6393&rft.epage=8&rft.pages=6393-8&rft.artnum=6393&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-50775-2&rft_dat=%3Cproquest_doaj_%3E3086183590%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-5e467ea08f2bade816abb19e389214e01b0222e6918c5818214fba6caa906e293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086183590&rft_id=info:pmid/39080312&rfr_iscdi=true |