Loading…
Complexity of a Microblogging Social Network in the Framework of Modern Nonlinear Science
Recent developments in nonlinear science have caused the formation of a new paradigm called the paradigm of complexity. The self-organized criticality theory constitutes the foundation of this paradigm. To estimate the complexity of a microblogging social network, we used one of the conceptual schem...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2018-01, Vol.2018 (2018), p.1-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-deda1081a81b4e17de990273cd0e55758b35df380748c0d06fa2ac7cf07dc8a53 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-deda1081a81b4e17de990273cd0e55758b35df380748c0d06fa2ac7cf07dc8a53 |
container_end_page | 11 |
container_issue | 2018 |
container_start_page | 1 |
container_title | Complexity (New York, N.Y.) |
container_volume | 2018 |
creator | Dmitriev, Andrey Maltseva, Svetlana Kornilov, Vasily |
description | Recent developments in nonlinear science have caused the formation of a new paradigm called the paradigm of complexity. The self-organized criticality theory constitutes the foundation of this paradigm. To estimate the complexity of a microblogging social network, we used one of the conceptual schemes of the paradigm, namely, the system of key signs of complexity of the external manifestations of the system irrespective of its internal structure. Our research revealed all the key signs of complexity of the time series of a number of microposts. We offer a new model of a microblogging social network as a nonlinear random dynamical system with additive noise in three-dimensional phase space. Implementations of this model in the adiabatic approximation possess all the key signs of complexity, making the model a reasonable evolutionary model for a microblogging social network. The use of adiabatic approximation allows us to model a microblogging social network as a nonlinear random dynamical system with multiplicative noise with the power-law in one-dimensional phase space. |
doi_str_mv | 10.1155/2018/4732491 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_82abc9f749b146fcbc7d7d36c140971f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A609889873</galeid><doaj_id>oai_doaj_org_article_82abc9f749b146fcbc7d7d36c140971f</doaj_id><sourcerecordid>A609889873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-deda1081a81b4e17de990273cd0e55758b35df380748c0d06fa2ac7cf07dc8a53</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEEqVw44wscYS0ntiO7WO1olCpLYfCgZPl2OPUS9ZenFSl_x5vU8ERzcGjp-89jfya5i3QEwAhTjsK6pRL1nENz5ojoFq3VHT988Mu-7aTSr5sXs3zllKqeyaPmh-bvNtP-DsuDyQHYslVdCUPUx7HmEZyk120E7nG5T6XnyQmstwiOS92h49CtVxljyWR65ymmNAWcuMiJoevmxfBTjO-eXqPm-_nn75tvrSXXz9fbM4uW8d7sbQevQWqwCoYOIL0qDXtJHOeohBSqIEJH5iikitHPe2D7ayTLlDpnbKCHTcXa67Pdmv2Je5seTDZRvMo5DIaW5boJjSqs4PTQXI9AO-DG5z00rPeAadaQqhZ79esfcm_7nBezDbflVTPNx0IBb0E6Cp1slKjraExhbwU6-p43EWXE4ZY9bOeaqW0kqwaPq6G-rXzXDD8PROoOTRnDs2Zp-Yq_mHFb2Py9j7-j3630lgZDPYfDYwzDuwPYlihBw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158167112</pqid></control><display><type>article</type><title>Complexity of a Microblogging Social Network in the Framework of Modern Nonlinear Science</title><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Dmitriev, Andrey ; Maltseva, Svetlana ; Kornilov, Vasily</creator><contributor>Brodka, Piotr ; Piotr Brodka</contributor><creatorcontrib>Dmitriev, Andrey ; Maltseva, Svetlana ; Kornilov, Vasily ; Brodka, Piotr ; Piotr Brodka</creatorcontrib><description>Recent developments in nonlinear science have caused the formation of a new paradigm called the paradigm of complexity. The self-organized criticality theory constitutes the foundation of this paradigm. To estimate the complexity of a microblogging social network, we used one of the conceptual schemes of the paradigm, namely, the system of key signs of complexity of the external manifestations of the system irrespective of its internal structure. Our research revealed all the key signs of complexity of the time series of a number of microposts. We offer a new model of a microblogging social network as a nonlinear random dynamical system with additive noise in three-dimensional phase space. Implementations of this model in the adiabatic approximation possess all the key signs of complexity, making the model a reasonable evolutionary model for a microblogging social network. The use of adiabatic approximation allows us to model a microblogging social network as a nonlinear random dynamical system with multiplicative noise with the power-law in one-dimensional phase space.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2018/4732491</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adiabatic flow ; Approximation ; Complexity ; Critical phenomena ; Dynamical systems ; Evolution ; Fractals ; Mathematical analysis ; Mathematical problems ; Microblogs ; Paradigms ; Physics ; Power ; Science ; Social networks ; Statistical mechanics ; Theory ; Three dimensional models ; Time series ; User behavior</subject><ispartof>Complexity (New York, N.Y.), 2018-01, Vol.2018 (2018), p.1-11</ispartof><rights>Copyright © 2018 Andrey Dmitriev et al.</rights><rights>COPYRIGHT 2018 John Wiley & Sons, Inc.</rights><rights>Copyright © 2018 Andrey Dmitriev et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-deda1081a81b4e17de990273cd0e55758b35df380748c0d06fa2ac7cf07dc8a53</citedby><cites>FETCH-LOGICAL-c465t-deda1081a81b4e17de990273cd0e55758b35df380748c0d06fa2ac7cf07dc8a53</cites><orcidid>0000-0002-7092-9101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Brodka, Piotr</contributor><contributor>Piotr Brodka</contributor><creatorcontrib>Dmitriev, Andrey</creatorcontrib><creatorcontrib>Maltseva, Svetlana</creatorcontrib><creatorcontrib>Kornilov, Vasily</creatorcontrib><title>Complexity of a Microblogging Social Network in the Framework of Modern Nonlinear Science</title><title>Complexity (New York, N.Y.)</title><description>Recent developments in nonlinear science have caused the formation of a new paradigm called the paradigm of complexity. The self-organized criticality theory constitutes the foundation of this paradigm. To estimate the complexity of a microblogging social network, we used one of the conceptual schemes of the paradigm, namely, the system of key signs of complexity of the external manifestations of the system irrespective of its internal structure. Our research revealed all the key signs of complexity of the time series of a number of microposts. We offer a new model of a microblogging social network as a nonlinear random dynamical system with additive noise in three-dimensional phase space. Implementations of this model in the adiabatic approximation possess all the key signs of complexity, making the model a reasonable evolutionary model for a microblogging social network. The use of adiabatic approximation allows us to model a microblogging social network as a nonlinear random dynamical system with multiplicative noise with the power-law in one-dimensional phase space.</description><subject>Adiabatic flow</subject><subject>Approximation</subject><subject>Complexity</subject><subject>Critical phenomena</subject><subject>Dynamical systems</subject><subject>Evolution</subject><subject>Fractals</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Microblogs</subject><subject>Paradigms</subject><subject>Physics</subject><subject>Power</subject><subject>Science</subject><subject>Social networks</subject><subject>Statistical mechanics</subject><subject>Theory</subject><subject>Three dimensional models</subject><subject>Time series</subject><subject>User behavior</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkUFv1DAQhSMEEqVw44wscYS0ntiO7WO1olCpLYfCgZPl2OPUS9ZenFSl_x5vU8ERzcGjp-89jfya5i3QEwAhTjsK6pRL1nENz5ojoFq3VHT988Mu-7aTSr5sXs3zllKqeyaPmh-bvNtP-DsuDyQHYslVdCUPUx7HmEZyk120E7nG5T6XnyQmstwiOS92h49CtVxljyWR65ymmNAWcuMiJoevmxfBTjO-eXqPm-_nn75tvrSXXz9fbM4uW8d7sbQevQWqwCoYOIL0qDXtJHOeohBSqIEJH5iikitHPe2D7ayTLlDpnbKCHTcXa67Pdmv2Je5seTDZRvMo5DIaW5boJjSqs4PTQXI9AO-DG5z00rPeAadaQqhZ79esfcm_7nBezDbflVTPNx0IBb0E6Cp1slKjraExhbwU6-p43EWXE4ZY9bOeaqW0kqwaPq6G-rXzXDD8PROoOTRnDs2Zp-Yq_mHFb2Py9j7-j3630lgZDPYfDYwzDuwPYlihBw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Dmitriev, Andrey</creator><creator>Maltseva, Svetlana</creator><creator>Kornilov, Vasily</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7092-9101</orcidid></search><sort><creationdate>20180101</creationdate><title>Complexity of a Microblogging Social Network in the Framework of Modern Nonlinear Science</title><author>Dmitriev, Andrey ; Maltseva, Svetlana ; Kornilov, Vasily</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-deda1081a81b4e17de990273cd0e55758b35df380748c0d06fa2ac7cf07dc8a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adiabatic flow</topic><topic>Approximation</topic><topic>Complexity</topic><topic>Critical phenomena</topic><topic>Dynamical systems</topic><topic>Evolution</topic><topic>Fractals</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Microblogs</topic><topic>Paradigms</topic><topic>Physics</topic><topic>Power</topic><topic>Science</topic><topic>Social networks</topic><topic>Statistical mechanics</topic><topic>Theory</topic><topic>Three dimensional models</topic><topic>Time series</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dmitriev, Andrey</creatorcontrib><creatorcontrib>Maltseva, Svetlana</creatorcontrib><creatorcontrib>Kornilov, Vasily</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dmitriev, Andrey</au><au>Maltseva, Svetlana</au><au>Kornilov, Vasily</au><au>Brodka, Piotr</au><au>Piotr Brodka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity of a Microblogging Social Network in the Framework of Modern Nonlinear Science</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>Recent developments in nonlinear science have caused the formation of a new paradigm called the paradigm of complexity. The self-organized criticality theory constitutes the foundation of this paradigm. To estimate the complexity of a microblogging social network, we used one of the conceptual schemes of the paradigm, namely, the system of key signs of complexity of the external manifestations of the system irrespective of its internal structure. Our research revealed all the key signs of complexity of the time series of a number of microposts. We offer a new model of a microblogging social network as a nonlinear random dynamical system with additive noise in three-dimensional phase space. Implementations of this model in the adiabatic approximation possess all the key signs of complexity, making the model a reasonable evolutionary model for a microblogging social network. The use of adiabatic approximation allows us to model a microblogging social network as a nonlinear random dynamical system with multiplicative noise with the power-law in one-dimensional phase space.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/4732491</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7092-9101</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-2787 |
ispartof | Complexity (New York, N.Y.), 2018-01, Vol.2018 (2018), p.1-11 |
issn | 1076-2787 1099-0526 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_82abc9f749b146fcbc7d7d36c140971f |
source | Wiley-Blackwell Open Access Titles(OpenAccess) |
subjects | Adiabatic flow Approximation Complexity Critical phenomena Dynamical systems Evolution Fractals Mathematical analysis Mathematical problems Microblogs Paradigms Physics Power Science Social networks Statistical mechanics Theory Three dimensional models Time series User behavior |
title | Complexity of a Microblogging Social Network in the Framework of Modern Nonlinear Science |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20of%20a%20Microblogging%20Social%20Network%20in%20the%20Framework%20of%20Modern%20Nonlinear%20Science&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Dmitriev,%20Andrey&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2018/4732491&rft_dat=%3Cgale_doaj_%3EA609889873%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-deda1081a81b4e17de990273cd0e55758b35df380748c0d06fa2ac7cf07dc8a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2158167112&rft_id=info:pmid/&rft_galeid=A609889873&rfr_iscdi=true |