Loading…

Development of Artificial Neural Network Model of Crude Oil Distillation Column

Artificial neural network in MATLAB simulator is used to model Baiji crude oil distillation unit based on data generated from aspen-HYSYS simulator. Thirteen inputs, six outputs and over 1487 data set are used to model the actual unit. Nonlinear autoregressive network with exogenous inputs (NARX) an...

Full description

Saved in:
Bibliographic Details
Published in:Tikrit journal of engineering sciences 2015-04, Vol.22 (1), p.24-37
Main Authors: Ahmed, Duraid F., Khalaf, Ali H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1480-698dc697f5708f4d587f5d28bc73edb4b6cf86a3327fc6970a2c228870ca1a993
cites cdi_FETCH-LOGICAL-c1480-698dc697f5708f4d587f5d28bc73edb4b6cf86a3327fc6970a2c228870ca1a993
container_end_page 37
container_issue 1
container_start_page 24
container_title Tikrit journal of engineering sciences
container_volume 22
creator Ahmed, Duraid F.
Khalaf, Ali H.
description Artificial neural network in MATLAB simulator is used to model Baiji crude oil distillation unit based on data generated from aspen-HYSYS simulator. Thirteen inputs, six outputs and over 1487 data set are used to model the actual unit. Nonlinear autoregressive network with exogenous inputs (NARX) and back propagation algorithm are used for training. Seventy percent of data are used for training the network while the remaining thirty percent are used for testing and validating the network to determine its prediction accuracy. One hidden layer and 34 hidden neurons are used for the proposed network with MSE of 0.25 is obtained. The number of neuron are selected based on less MSE for the network. The model founded to predict the optimal operating conditions for different objective functions within the training limit since ANN models are poor extrapolators. They are usually only reliable within the range of data that they had been trained for.
doi_str_mv 10.25130/tjes.22.1.03
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_82b3591c17af4fc6aa19a07be2d589f0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_82b3591c17af4fc6aa19a07be2d589f0</doaj_id><sourcerecordid>oai_doaj_org_article_82b3591c17af4fc6aa19a07be2d589f0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1480-698dc697f5708f4d587f5d28bc73edb4b6cf86a3327fc6970a2c228870ca1a993</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpkXteIMG7TmL7WKX8VCr0AhI3y3Fs5OLWlZOCeHvSFnGa1Wj0rWYIuQVaYAWM3g0b2xeIBRSUXZAJMsCcV0JekgkIYDnU-H5NZn2_oZQCK7GqcELWC_tlQ9xv7W7IosvmafDOG69D9mIP6STDd0yf2XPsbDhGmnTobLb2IVv4fvAh6MHHXdbEcNjubsiV06G3sz-dkreH-9fmKV-tH5fNfJUbKAXNayk6U0vuKk6FK7tKjGeHojWc2a4t29o4UWvGkLtjjmo0iEJwajRoKdmULM_cLuqN2ie_1elHRe3VyYjpQ-mxiglWCWxZJcEA164caVqD1JS3Fse30tGRlZ9ZJsW-T9b984Cq07jqOK5CVKAoY7_-Xm0O</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of Artificial Neural Network Model of Crude Oil Distillation Column</title><source>EZB Electronic Journals Library</source><creator>Ahmed, Duraid F. ; Khalaf, Ali H.</creator><creatorcontrib>Ahmed, Duraid F. ; Khalaf, Ali H.</creatorcontrib><description>Artificial neural network in MATLAB simulator is used to model Baiji crude oil distillation unit based on data generated from aspen-HYSYS simulator. Thirteen inputs, six outputs and over 1487 data set are used to model the actual unit. Nonlinear autoregressive network with exogenous inputs (NARX) and back propagation algorithm are used for training. Seventy percent of data are used for training the network while the remaining thirty percent are used for testing and validating the network to determine its prediction accuracy. One hidden layer and 34 hidden neurons are used for the proposed network with MSE of 0.25 is obtained. The number of neuron are selected based on less MSE for the network. The model founded to predict the optimal operating conditions for different objective functions within the training limit since ANN models are poor extrapolators. They are usually only reliable within the range of data that they had been trained for.</description><identifier>ISSN: 1813-162X</identifier><identifier>EISSN: 2312-7589</identifier><identifier>DOI: 10.25130/tjes.22.1.03</identifier><language>eng</language><publisher>Tikrit University</publisher><subject>Artificial Neural Network Model ; Aspen-HYSYS ; Crude Oil Distillation Unit ; MATLAB</subject><ispartof>Tikrit journal of engineering sciences, 2015-04, Vol.22 (1), p.24-37</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1480-698dc697f5708f4d587f5d28bc73edb4b6cf86a3327fc6970a2c228870ca1a993</citedby><cites>FETCH-LOGICAL-c1480-698dc697f5708f4d587f5d28bc73edb4b6cf86a3327fc6970a2c228870ca1a993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ahmed, Duraid F.</creatorcontrib><creatorcontrib>Khalaf, Ali H.</creatorcontrib><title>Development of Artificial Neural Network Model of Crude Oil Distillation Column</title><title>Tikrit journal of engineering sciences</title><description>Artificial neural network in MATLAB simulator is used to model Baiji crude oil distillation unit based on data generated from aspen-HYSYS simulator. Thirteen inputs, six outputs and over 1487 data set are used to model the actual unit. Nonlinear autoregressive network with exogenous inputs (NARX) and back propagation algorithm are used for training. Seventy percent of data are used for training the network while the remaining thirty percent are used for testing and validating the network to determine its prediction accuracy. One hidden layer and 34 hidden neurons are used for the proposed network with MSE of 0.25 is obtained. The number of neuron are selected based on less MSE for the network. The model founded to predict the optimal operating conditions for different objective functions within the training limit since ANN models are poor extrapolators. They are usually only reliable within the range of data that they had been trained for.</description><subject>Artificial Neural Network Model</subject><subject>Aspen-HYSYS</subject><subject>Crude Oil Distillation Unit</subject><subject>MATLAB</subject><issn>1813-162X</issn><issn>2312-7589</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kM1OwzAQhC0EElXpkXteIMG7TmL7WKX8VCr0AhI3y3Fs5OLWlZOCeHvSFnGa1Wj0rWYIuQVaYAWM3g0b2xeIBRSUXZAJMsCcV0JekgkIYDnU-H5NZn2_oZQCK7GqcELWC_tlQ9xv7W7IosvmafDOG69D9mIP6STDd0yf2XPsbDhGmnTobLb2IVv4fvAh6MHHXdbEcNjubsiV06G3sz-dkreH-9fmKV-tH5fNfJUbKAXNayk6U0vuKk6FK7tKjGeHojWc2a4t29o4UWvGkLtjjmo0iEJwajRoKdmULM_cLuqN2ie_1elHRe3VyYjpQ-mxiglWCWxZJcEA164caVqD1JS3Fse30tGRlZ9ZJsW-T9b984Cq07jqOK5CVKAoY7_-Xm0O</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Ahmed, Duraid F.</creator><creator>Khalaf, Ali H.</creator><general>Tikrit University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20150401</creationdate><title>Development of Artificial Neural Network Model of Crude Oil Distillation Column</title><author>Ahmed, Duraid F. ; Khalaf, Ali H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1480-698dc697f5708f4d587f5d28bc73edb4b6cf86a3327fc6970a2c228870ca1a993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial Neural Network Model</topic><topic>Aspen-HYSYS</topic><topic>Crude Oil Distillation Unit</topic><topic>MATLAB</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Duraid F.</creatorcontrib><creatorcontrib>Khalaf, Ali H.</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Tikrit journal of engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Duraid F.</au><au>Khalaf, Ali H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Artificial Neural Network Model of Crude Oil Distillation Column</atitle><jtitle>Tikrit journal of engineering sciences</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>22</volume><issue>1</issue><spage>24</spage><epage>37</epage><pages>24-37</pages><issn>1813-162X</issn><eissn>2312-7589</eissn><abstract>Artificial neural network in MATLAB simulator is used to model Baiji crude oil distillation unit based on data generated from aspen-HYSYS simulator. Thirteen inputs, six outputs and over 1487 data set are used to model the actual unit. Nonlinear autoregressive network with exogenous inputs (NARX) and back propagation algorithm are used for training. Seventy percent of data are used for training the network while the remaining thirty percent are used for testing and validating the network to determine its prediction accuracy. One hidden layer and 34 hidden neurons are used for the proposed network with MSE of 0.25 is obtained. The number of neuron are selected based on less MSE for the network. The model founded to predict the optimal operating conditions for different objective functions within the training limit since ANN models are poor extrapolators. They are usually only reliable within the range of data that they had been trained for.</abstract><pub>Tikrit University</pub><doi>10.25130/tjes.22.1.03</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1813-162X
ispartof Tikrit journal of engineering sciences, 2015-04, Vol.22 (1), p.24-37
issn 1813-162X
2312-7589
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_82b3591c17af4fc6aa19a07be2d589f0
source EZB Electronic Journals Library
subjects Artificial Neural Network Model
Aspen-HYSYS
Crude Oil Distillation Unit
MATLAB
title Development of Artificial Neural Network Model of Crude Oil Distillation Column
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Artificial%20Neural%20Network%20Model%20of%20Crude%20Oil%20Distillation%20Column&rft.jtitle=Tikrit%20journal%20of%20engineering%20sciences&rft.au=Ahmed,%20Duraid%20F.&rft.date=2015-04-01&rft.volume=22&rft.issue=1&rft.spage=24&rft.epage=37&rft.pages=24-37&rft.issn=1813-162X&rft.eissn=2312-7589&rft_id=info:doi/10.25130/tjes.22.1.03&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_82b3591c17af4fc6aa19a07be2d589f0%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1480-698dc697f5708f4d587f5d28bc73edb4b6cf86a3327fc6970a2c228870ca1a993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true