Loading…

Experimental Study on Mechanical Properties of Freeze-Thaw Damaged Red Sandstone under Combined Dynamic and Static Loading

Using the freeze-thaw cycle test chamber, the red sandstone samples are subjected to cyclic freeze-thaw tests. The physical properties, static mechanical properties of freeze-thaw damage rocks, and the compressional wave velocity at specific axial pressure are measured using conventional physical te...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration 2021, Vol.2021 (1)
Main Authors: Mei, Song-hua, Liang, Xu-li, Wen, Lei, Kou, Zi-long
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using the freeze-thaw cycle test chamber, the red sandstone samples are subjected to cyclic freeze-thaw tests. The physical properties, static mechanical properties of freeze-thaw damage rocks, and the compressional wave velocity at specific axial pressure are measured using conventional physical tests and uniaxial compression tests. The mechanical properties of freeze-thaw damage rocks under dynamic and static loading were studied using Hopkinson pressure bar which can exert axial pressure. The studies show that, with the increase of freeze-thaw cycles, the surface layer of the rock sample undergoes spalling phenomenon, the weight gradually decreases, the sample compactness becomes worse, there are microcracks between the cemented particles, and the compressive strength and elastic modulus decrease. Under the static loading, the longitudinal wave velocity of freeze-thaw damaged samples change significantly compared with that of samples without freeze-thaw. The freeze-thaw damage degree, axial pressure, and strain rate are coupled with each other, which together affect the dynamic mechanical properties of samples, and make the variation of mechanical parameters, such as dynamic peak strength and dynamic elastic modulus of rock. The combined action of freeze-thaw damage and axial pressure weakens the strain rate effect of samples, but when the incident wave of SHPB test is same, the dynamic strength and elastic modulus of freeze-thaw damaged samples are reduced compared with those without freeze-thaw. Combining with strain equivalence principle, the constitutive relation of freeze-thaw damage of red sandstone under dynamic and static combined loading can reflect the influence of coupling damage of axial pressure and freeze-thaw, dynamic impact parameters, and other factors, which are in good agreement with the test results.
ISSN:1070-9622
1875-9203
DOI:10.1155/2021/9980549