Loading…
Effect of elevated pressure on gas-solid flow properties in a powder feeding system
In view of the powder feeding system, a multi-physical coupling model of the gas-powder-piston was established based on the Euler-Euler two-fluid model. The numerical simulation method was applied to explore the effects of dense gas-solid flow characteristics under different operating pressures. The...
Saved in:
Published in: | Polish journal of chemical technology 2022-09, Vol.24 (3), p.41-52 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In view of the powder feeding system, a multi-physical coupling model of the gas-powder-piston was established based on the Euler-Euler two-fluid model. The numerical simulation method was applied to explore the effects of dense gas-solid flow characteristics under different operating pressures. The results show that gas-solid pulsations at different operating pressures are mainly concentrated in the upper part of the powder tank. An elevated operating pressure efficiently decreases the powder layer area (ε
= 0.1) fluctuation. As the operating pressure increases from 0.5 MPa to 3.0 MPa, the rising time and fluctuation rate of pressure are reduced by 71.4% and 62.3%, respectively, and the pressure in the tank has a long stabilization period. Meanwhile, the variation of the instantaneous powder flow rate is more stable and its average value is closer to the theoretical. A high-pressure environment is more conducive to the stable transportation of powder. |
---|---|
ISSN: | 1899-4741 1509-8117 1899-4741 |
DOI: | 10.2478/pjct-2022-0021 |