Loading…
The Protective Role of TREM2 in the Heterogenous Population of Macrophages during Post-Myocardial Infarction Inflammation
Advances in interventions after myocardial infarction (MI) have dramatically increased survival, but MI remains the leading cause of heart failure due to maladaptive ventricular remodeling following ischemic damage. Inflammation is crucial in both the initial response to ischemia and subsequent woun...
Saved in:
Published in: | International journal of molecular sciences 2023-03, Vol.24 (6), p.5556 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Advances in interventions after myocardial infarction (MI) have dramatically increased survival, but MI remains the leading cause of heart failure due to maladaptive ventricular remodeling following ischemic damage. Inflammation is crucial in both the initial response to ischemia and subsequent wound healing in the myocardium. To date, preclinical and clinical efforts have been made to elucidate the deleterious effects of immune cells contributing to ventricular remodeling and to identify therapeutic molecular targets. The conventional concept classifies macrophages or monocytes into dichotomous populations, while recent studies support their diverse subpopulations and spatiotemporal dynamicity. The single-cell and spatial transcriptomic landscapes of macrophages in infarcted hearts successfully revealed the heterogeneity of cell types and their subpopulations post-MI. Among them, subsets of Trem2
macrophages were identified that were recruited to infarcted myocardial tissue in the subacute phase of MI. The upregulation of anti-inflammatory genes was observed in Trem2
macrophages, and an in vivo injection of soluble Trem2 during the subacute phase of MI significantly improved myocardial function and the remodeling of infarcted mice hearts, suggesting the potential therapeutic role of Trem2 in LV remodeling. Further investigation of the reparative role of Trem2 in LV remodeling would provide novel therapeutic targets for MI. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms24065556 |