Loading…
Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling
Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illu...
Saved in:
Published in: | EMBO molecular medicine 2020-11, Vol.12 (11), p.e11739-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23 |
---|---|
cites | cdi_FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23 |
container_end_page | n/a |
container_issue | 11 |
container_start_page | e11739 |
container_title | EMBO molecular medicine |
container_volume | 12 |
creator | Bosakova, Michaela Abraham, Sara P Nita, Alexandru Hruba, Eva Buchtova, Marcela Taylor, S Paige Duran, Ivan Martin, Jorge Svozilova, Katerina Barta, Tomas Varecha, Miroslav Balek, Lukas Kohoutek, Jiri Radaszkiewicz, Tomasz Pusapati, Ganesh V Bryja, Vitezslav Rush, Eric T Thiffault, Isabelle Nickerson, Deborah A Bamshad, Michael J Rohatgi, Rajat Cohn, Daniel H Krakow, Deborah Krejci, Pavel |
description | Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss‐of‐function mutations in the gene encoding adrenergic receptor kinase 1 (
ADRBK1
or
GRK2
).
GRK2
cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate.
GRK2
null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia‐based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co‐receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies.
Synopsis
This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome.
GRK2 loss leads to bone defects involving the proliferation and hypertrophic differentiation of chondrocytes in the growth plate cartilage, and sulfation of the cartilage extracellular matrix.
GRK2 loss causes under‐phosphorylation of Smoothened and its exclusion from the cilia, and inhibits Hedgehog pathway.
GRK2 loss inhibits canonical Wnt signaling through reduced LRP6 phosphorylation and Frizzled‐βArrestin2 interaction.
Graphical Abstract
This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome. |
doi_str_mv | 10.15252/emmm.201911739 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_83076ddc0da44600bc5e023ad4e46b45</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710569853</galeid><doaj_id>oai_doaj_org_article_83076ddc0da44600bc5e023ad4e46b45</doaj_id><sourcerecordid>A710569853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23</originalsourceid><addsrcrecordid>eNqFkt1rFDEUxQdRbF199k0GfPFlt0kmHxMfhFJqW-0iiKJvIZPcmabMJNtkRtn_3my3bruiSCAJye-c5F5OUbzEaIEZYeQIhmFYEIQlxqKSj4pDLJiYU17Tx7u94AfFs5SuEeKM4_ppcVBVBCHK0WHxfTmNenTBp9L58uzzR1IaPSUoP8DkoUxrb2MYoGzWpRtW2kXnu_IcbAdXoSu1txn3wTuj-_KbH8vkOq_7DD0vnrS6T_Dibp0VX9-ffjk5n19-Ors4Ob6cG065nDNODDSNRIRRRGqCeKsx4qbGQGVrGt1KDC2FqmE1qYFgDfka11oyRoQl1ay42PraoK_VKrpBx7UK2qnbgxA7pePoTA-qrpDg1hpkNc3Fo8YwQKTSlgLlDWXZ693WazU1A1gDfoy63zPdv_HuSnXhhxI8q2uUDd7cGcRwM0Ea1eCSgb7XHsKUFKEcV1KKPM-K13-g12GKuXcbiomaMSnoPdXpXIDzbcjvmo2pOhYYMS5rVmVq8RcqDwuDM8FD6_L5nuBoKzAxpBSh3dWIkboNltoES-2ClRWvHrZmx_9OUgbeboGf-a31__zU6XK5fOiOtuK02gQM4n0z_vWhX2Cf5-M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457855974</pqid></control><display><type>article</type><title>Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><creator>Bosakova, Michaela ; Abraham, Sara P ; Nita, Alexandru ; Hruba, Eva ; Buchtova, Marcela ; Taylor, S Paige ; Duran, Ivan ; Martin, Jorge ; Svozilova, Katerina ; Barta, Tomas ; Varecha, Miroslav ; Balek, Lukas ; Kohoutek, Jiri ; Radaszkiewicz, Tomasz ; Pusapati, Ganesh V ; Bryja, Vitezslav ; Rush, Eric T ; Thiffault, Isabelle ; Nickerson, Deborah A ; Bamshad, Michael J ; Rohatgi, Rajat ; Cohn, Daniel H ; Krakow, Deborah ; Krejci, Pavel</creator><creatorcontrib>Bosakova, Michaela ; Abraham, Sara P ; Nita, Alexandru ; Hruba, Eva ; Buchtova, Marcela ; Taylor, S Paige ; Duran, Ivan ; Martin, Jorge ; Svozilova, Katerina ; Barta, Tomas ; Varecha, Miroslav ; Balek, Lukas ; Kohoutek, Jiri ; Radaszkiewicz, Tomasz ; Pusapati, Ganesh V ; Bryja, Vitezslav ; Rush, Eric T ; Thiffault, Isabelle ; Nickerson, Deborah A ; Bamshad, Michael J ; Rohatgi, Rajat ; Cohn, Daniel H ; Krakow, Deborah ; Krejci, Pavel ; University of Washington Center for Mendelian Genomics ; University of Washington Center for Mendelian Genomics</creatorcontrib><description>Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss‐of‐function mutations in the gene encoding adrenergic receptor kinase 1 (
ADRBK1
or
GRK2
).
GRK2
cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate.
GRK2
null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia‐based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co‐receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies.
Synopsis
This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome.
GRK2 loss leads to bone defects involving the proliferation and hypertrophic differentiation of chondrocytes in the growth plate cartilage, and sulfation of the cartilage extracellular matrix.
GRK2 loss causes under‐phosphorylation of Smoothened and its exclusion from the cilia, and inhibits Hedgehog pathway.
GRK2 loss inhibits canonical Wnt signaling through reduced LRP6 phosphorylation and Frizzled‐βArrestin2 interaction.
Graphical Abstract
This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome.</description><identifier>ISSN: 1757-4676</identifier><identifier>EISSN: 1757-4684</identifier><identifier>DOI: 10.15252/emmm.201911739</identifier><identifier>PMID: 33200460</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adrenergic receptors ; asphyxiating thoracic dystrophy ; b-Adrenergic-receptor kinase ; Bones ; Cartilage ; Chondrocytes ; Chondrogenesis ; Cilia ; Cytology ; Development and progression ; Dystrophy ; Ellis-Van Creveld Syndrome ; EMBO11 ; EMBO16 ; EMBO25 ; G-Protein-Coupled Receptor Kinase 2 - genetics ; Gene expression ; Genetic aspects ; GRK2 ; Growth plate ; hedgehog ; Hedgehog protein ; Hedgehog Proteins - genetics ; Hereditary diseases ; Humans ; Hydrops fetalis ; Insects ; Jeune syndrome ; Kinases ; Ligands ; Mutation ; Null cells ; Phosphorylation ; Proteins ; Skeletogenesis ; smoothened ; Thorax ; Vertebrates ; Wnt ; Wnt protein ; Wnt Signaling Pathway</subject><ispartof>EMBO molecular medicine, 2020-11, Vol.12 (11), p.e11739-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23</citedby><cites>FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23</cites><orcidid>0000-0002-9136-5085 ; 0000-0003-0618-9134 ; 0000-0001-9906-4968 ; 0000-0003-4850-9933 ; 0000-0002-7627-0344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2457855974/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2457855974?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33200460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bosakova, Michaela</creatorcontrib><creatorcontrib>Abraham, Sara P</creatorcontrib><creatorcontrib>Nita, Alexandru</creatorcontrib><creatorcontrib>Hruba, Eva</creatorcontrib><creatorcontrib>Buchtova, Marcela</creatorcontrib><creatorcontrib>Taylor, S Paige</creatorcontrib><creatorcontrib>Duran, Ivan</creatorcontrib><creatorcontrib>Martin, Jorge</creatorcontrib><creatorcontrib>Svozilova, Katerina</creatorcontrib><creatorcontrib>Barta, Tomas</creatorcontrib><creatorcontrib>Varecha, Miroslav</creatorcontrib><creatorcontrib>Balek, Lukas</creatorcontrib><creatorcontrib>Kohoutek, Jiri</creatorcontrib><creatorcontrib>Radaszkiewicz, Tomasz</creatorcontrib><creatorcontrib>Pusapati, Ganesh V</creatorcontrib><creatorcontrib>Bryja, Vitezslav</creatorcontrib><creatorcontrib>Rush, Eric T</creatorcontrib><creatorcontrib>Thiffault, Isabelle</creatorcontrib><creatorcontrib>Nickerson, Deborah A</creatorcontrib><creatorcontrib>Bamshad, Michael J</creatorcontrib><creatorcontrib>Rohatgi, Rajat</creatorcontrib><creatorcontrib>Cohn, Daniel H</creatorcontrib><creatorcontrib>Krakow, Deborah</creatorcontrib><creatorcontrib>Krejci, Pavel</creatorcontrib><creatorcontrib>University of Washington Center for Mendelian Genomics</creatorcontrib><creatorcontrib>University of Washington Center for Mendelian Genomics</creatorcontrib><title>Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling</title><title>EMBO molecular medicine</title><addtitle>EMBO Mol Med</addtitle><addtitle>EMBO Mol Med</addtitle><description>Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss‐of‐function mutations in the gene encoding adrenergic receptor kinase 1 (
ADRBK1
or
GRK2
).
GRK2
cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate.
GRK2
null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia‐based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co‐receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies.
Synopsis
This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome.
GRK2 loss leads to bone defects involving the proliferation and hypertrophic differentiation of chondrocytes in the growth plate cartilage, and sulfation of the cartilage extracellular matrix.
GRK2 loss causes under‐phosphorylation of Smoothened and its exclusion from the cilia, and inhibits Hedgehog pathway.
GRK2 loss inhibits canonical Wnt signaling through reduced LRP6 phosphorylation and Frizzled‐βArrestin2 interaction.
Graphical Abstract
This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome.</description><subject>Adrenergic receptors</subject><subject>asphyxiating thoracic dystrophy</subject><subject>b-Adrenergic-receptor kinase</subject><subject>Bones</subject><subject>Cartilage</subject><subject>Chondrocytes</subject><subject>Chondrogenesis</subject><subject>Cilia</subject><subject>Cytology</subject><subject>Development and progression</subject><subject>Dystrophy</subject><subject>Ellis-Van Creveld Syndrome</subject><subject>EMBO11</subject><subject>EMBO16</subject><subject>EMBO25</subject><subject>G-Protein-Coupled Receptor Kinase 2 - genetics</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>GRK2</subject><subject>Growth plate</subject><subject>hedgehog</subject><subject>Hedgehog protein</subject><subject>Hedgehog Proteins - genetics</subject><subject>Hereditary diseases</subject><subject>Humans</subject><subject>Hydrops fetalis</subject><subject>Insects</subject><subject>Jeune syndrome</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Mutation</subject><subject>Null cells</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Skeletogenesis</subject><subject>smoothened</subject><subject>Thorax</subject><subject>Vertebrates</subject><subject>Wnt</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway</subject><issn>1757-4676</issn><issn>1757-4684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkt1rFDEUxQdRbF199k0GfPFlt0kmHxMfhFJqW-0iiKJvIZPcmabMJNtkRtn_3my3bruiSCAJye-c5F5OUbzEaIEZYeQIhmFYEIQlxqKSj4pDLJiYU17Tx7u94AfFs5SuEeKM4_ppcVBVBCHK0WHxfTmNenTBp9L58uzzR1IaPSUoP8DkoUxrb2MYoGzWpRtW2kXnu_IcbAdXoSu1txn3wTuj-_KbH8vkOq_7DD0vnrS6T_Dibp0VX9-ffjk5n19-Ors4Ob6cG065nDNODDSNRIRRRGqCeKsx4qbGQGVrGt1KDC2FqmE1qYFgDfka11oyRoQl1ay42PraoK_VKrpBx7UK2qnbgxA7pePoTA-qrpDg1hpkNc3Fo8YwQKTSlgLlDWXZ693WazU1A1gDfoy63zPdv_HuSnXhhxI8q2uUDd7cGcRwM0Ea1eCSgb7XHsKUFKEcV1KKPM-K13-g12GKuXcbiomaMSnoPdXpXIDzbcjvmo2pOhYYMS5rVmVq8RcqDwuDM8FD6_L5nuBoKzAxpBSh3dWIkboNltoES-2ClRWvHrZmx_9OUgbeboGf-a31__zU6XK5fOiOtuK02gQM4n0z_vWhX2Cf5-M</recordid><startdate>20201106</startdate><enddate>20201106</enddate><creator>Bosakova, Michaela</creator><creator>Abraham, Sara P</creator><creator>Nita, Alexandru</creator><creator>Hruba, Eva</creator><creator>Buchtova, Marcela</creator><creator>Taylor, S Paige</creator><creator>Duran, Ivan</creator><creator>Martin, Jorge</creator><creator>Svozilova, Katerina</creator><creator>Barta, Tomas</creator><creator>Varecha, Miroslav</creator><creator>Balek, Lukas</creator><creator>Kohoutek, Jiri</creator><creator>Radaszkiewicz, Tomasz</creator><creator>Pusapati, Ganesh V</creator><creator>Bryja, Vitezslav</creator><creator>Rush, Eric T</creator><creator>Thiffault, Isabelle</creator><creator>Nickerson, Deborah A</creator><creator>Bamshad, Michael J</creator><creator>Rohatgi, Rajat</creator><creator>Cohn, Daniel H</creator><creator>Krakow, Deborah</creator><creator>Krejci, Pavel</creator><general>Nature Publishing Group UK</general><general>John Wiley & Sons, Inc</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><general>Springer Nature</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9136-5085</orcidid><orcidid>https://orcid.org/0000-0003-0618-9134</orcidid><orcidid>https://orcid.org/0000-0001-9906-4968</orcidid><orcidid>https://orcid.org/0000-0003-4850-9933</orcidid><orcidid>https://orcid.org/0000-0002-7627-0344</orcidid></search><sort><creationdate>20201106</creationdate><title>Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling</title><author>Bosakova, Michaela ; Abraham, Sara P ; Nita, Alexandru ; Hruba, Eva ; Buchtova, Marcela ; Taylor, S Paige ; Duran, Ivan ; Martin, Jorge ; Svozilova, Katerina ; Barta, Tomas ; Varecha, Miroslav ; Balek, Lukas ; Kohoutek, Jiri ; Radaszkiewicz, Tomasz ; Pusapati, Ganesh V ; Bryja, Vitezslav ; Rush, Eric T ; Thiffault, Isabelle ; Nickerson, Deborah A ; Bamshad, Michael J ; Rohatgi, Rajat ; Cohn, Daniel H ; Krakow, Deborah ; Krejci, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adrenergic receptors</topic><topic>asphyxiating thoracic dystrophy</topic><topic>b-Adrenergic-receptor kinase</topic><topic>Bones</topic><topic>Cartilage</topic><topic>Chondrocytes</topic><topic>Chondrogenesis</topic><topic>Cilia</topic><topic>Cytology</topic><topic>Development and progression</topic><topic>Dystrophy</topic><topic>Ellis-Van Creveld Syndrome</topic><topic>EMBO11</topic><topic>EMBO16</topic><topic>EMBO25</topic><topic>G-Protein-Coupled Receptor Kinase 2 - genetics</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>GRK2</topic><topic>Growth plate</topic><topic>hedgehog</topic><topic>Hedgehog protein</topic><topic>Hedgehog Proteins - genetics</topic><topic>Hereditary diseases</topic><topic>Humans</topic><topic>Hydrops fetalis</topic><topic>Insects</topic><topic>Jeune syndrome</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Mutation</topic><topic>Null cells</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Skeletogenesis</topic><topic>smoothened</topic><topic>Thorax</topic><topic>Vertebrates</topic><topic>Wnt</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosakova, Michaela</creatorcontrib><creatorcontrib>Abraham, Sara P</creatorcontrib><creatorcontrib>Nita, Alexandru</creatorcontrib><creatorcontrib>Hruba, Eva</creatorcontrib><creatorcontrib>Buchtova, Marcela</creatorcontrib><creatorcontrib>Taylor, S Paige</creatorcontrib><creatorcontrib>Duran, Ivan</creatorcontrib><creatorcontrib>Martin, Jorge</creatorcontrib><creatorcontrib>Svozilova, Katerina</creatorcontrib><creatorcontrib>Barta, Tomas</creatorcontrib><creatorcontrib>Varecha, Miroslav</creatorcontrib><creatorcontrib>Balek, Lukas</creatorcontrib><creatorcontrib>Kohoutek, Jiri</creatorcontrib><creatorcontrib>Radaszkiewicz, Tomasz</creatorcontrib><creatorcontrib>Pusapati, Ganesh V</creatorcontrib><creatorcontrib>Bryja, Vitezslav</creatorcontrib><creatorcontrib>Rush, Eric T</creatorcontrib><creatorcontrib>Thiffault, Isabelle</creatorcontrib><creatorcontrib>Nickerson, Deborah A</creatorcontrib><creatorcontrib>Bamshad, Michael J</creatorcontrib><creatorcontrib>Rohatgi, Rajat</creatorcontrib><creatorcontrib>Cohn, Daniel H</creatorcontrib><creatorcontrib>Krakow, Deborah</creatorcontrib><creatorcontrib>Krejci, Pavel</creatorcontrib><creatorcontrib>University of Washington Center for Mendelian Genomics</creatorcontrib><creatorcontrib>University of Washington Center for Mendelian Genomics</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library website</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>EMBO molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosakova, Michaela</au><au>Abraham, Sara P</au><au>Nita, Alexandru</au><au>Hruba, Eva</au><au>Buchtova, Marcela</au><au>Taylor, S Paige</au><au>Duran, Ivan</au><au>Martin, Jorge</au><au>Svozilova, Katerina</au><au>Barta, Tomas</au><au>Varecha, Miroslav</au><au>Balek, Lukas</au><au>Kohoutek, Jiri</au><au>Radaszkiewicz, Tomasz</au><au>Pusapati, Ganesh V</au><au>Bryja, Vitezslav</au><au>Rush, Eric T</au><au>Thiffault, Isabelle</au><au>Nickerson, Deborah A</au><au>Bamshad, Michael J</au><au>Rohatgi, Rajat</au><au>Cohn, Daniel H</au><au>Krakow, Deborah</au><au>Krejci, Pavel</au><aucorp>University of Washington Center for Mendelian Genomics</aucorp><aucorp>University of Washington Center for Mendelian Genomics</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling</atitle><jtitle>EMBO molecular medicine</jtitle><stitle>EMBO Mol Med</stitle><addtitle>EMBO Mol Med</addtitle><date>2020-11-06</date><risdate>2020</risdate><volume>12</volume><issue>11</issue><spage>e11739</spage><epage>n/a</epage><pages>e11739-n/a</pages><issn>1757-4676</issn><eissn>1757-4684</eissn><abstract>Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss‐of‐function mutations in the gene encoding adrenergic receptor kinase 1 (
ADRBK1
or
GRK2
).
GRK2
cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate.
GRK2
null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia‐based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co‐receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies.
Synopsis
This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome.
GRK2 loss leads to bone defects involving the proliferation and hypertrophic differentiation of chondrocytes in the growth plate cartilage, and sulfation of the cartilage extracellular matrix.
GRK2 loss causes under‐phosphorylation of Smoothened and its exclusion from the cilia, and inhibits Hedgehog pathway.
GRK2 loss inhibits canonical Wnt signaling through reduced LRP6 phosphorylation and Frizzled‐βArrestin2 interaction.
Graphical Abstract
This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33200460</pmid><doi>10.15252/emmm.201911739</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9136-5085</orcidid><orcidid>https://orcid.org/0000-0003-0618-9134</orcidid><orcidid>https://orcid.org/0000-0001-9906-4968</orcidid><orcidid>https://orcid.org/0000-0003-4850-9933</orcidid><orcidid>https://orcid.org/0000-0002-7627-0344</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-4676 |
ispartof | EMBO molecular medicine, 2020-11, Vol.12 (11), p.e11739-n/a |
issn | 1757-4676 1757-4684 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_83076ddc0da44600bc5e023ad4e46b45 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access; PubMed Central |
subjects | Adrenergic receptors asphyxiating thoracic dystrophy b-Adrenergic-receptor kinase Bones Cartilage Chondrocytes Chondrogenesis Cilia Cytology Development and progression Dystrophy Ellis-Van Creveld Syndrome EMBO11 EMBO16 EMBO25 G-Protein-Coupled Receptor Kinase 2 - genetics Gene expression Genetic aspects GRK2 Growth plate hedgehog Hedgehog protein Hedgehog Proteins - genetics Hereditary diseases Humans Hydrops fetalis Insects Jeune syndrome Kinases Ligands Mutation Null cells Phosphorylation Proteins Skeletogenesis smoothened Thorax Vertebrates Wnt Wnt protein Wnt Signaling Pathway |
title | Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutations%20in%20GRK2%20cause%20Jeune%20syndrome%20by%20impairing%20Hedgehog%20and%20canonical%20Wnt%20signaling&rft.jtitle=EMBO%20molecular%20medicine&rft.au=Bosakova,%20Michaela&rft.aucorp=University%20of%20Washington%20Center%20for%20Mendelian%20Genomics&rft.date=2020-11-06&rft.volume=12&rft.issue=11&rft.spage=e11739&rft.epage=n/a&rft.pages=e11739-n/a&rft.issn=1757-4676&rft.eissn=1757-4684&rft_id=info:doi/10.15252/emmm.201911739&rft_dat=%3Cgale_doaj_%3EA710569853%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2457855974&rft_id=info:pmid/33200460&rft_galeid=A710569853&rfr_iscdi=true |