Loading…

Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling

Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illu...

Full description

Saved in:
Bibliographic Details
Published in:EMBO molecular medicine 2020-11, Vol.12 (11), p.e11739-n/a
Main Authors: Bosakova, Michaela, Abraham, Sara P, Nita, Alexandru, Hruba, Eva, Buchtova, Marcela, Taylor, S Paige, Duran, Ivan, Martin, Jorge, Svozilova, Katerina, Barta, Tomas, Varecha, Miroslav, Balek, Lukas, Kohoutek, Jiri, Radaszkiewicz, Tomasz, Pusapati, Ganesh V, Bryja, Vitezslav, Rush, Eric T, Thiffault, Isabelle, Nickerson, Deborah A, Bamshad, Michael J, Rohatgi, Rajat, Cohn, Daniel H, Krakow, Deborah, Krejci, Pavel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23
cites cdi_FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23
container_end_page n/a
container_issue 11
container_start_page e11739
container_title EMBO molecular medicine
container_volume 12
creator Bosakova, Michaela
Abraham, Sara P
Nita, Alexandru
Hruba, Eva
Buchtova, Marcela
Taylor, S Paige
Duran, Ivan
Martin, Jorge
Svozilova, Katerina
Barta, Tomas
Varecha, Miroslav
Balek, Lukas
Kohoutek, Jiri
Radaszkiewicz, Tomasz
Pusapati, Ganesh V
Bryja, Vitezslav
Rush, Eric T
Thiffault, Isabelle
Nickerson, Deborah A
Bamshad, Michael J
Rohatgi, Rajat
Cohn, Daniel H
Krakow, Deborah
Krejci, Pavel
description Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss‐of‐function mutations in the gene encoding adrenergic receptor kinase 1 ( ADRBK1 or GRK2 ). GRK2 cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate. GRK2 null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia‐based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co‐receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies. Synopsis This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome. GRK2 loss leads to bone defects involving the proliferation and hypertrophic differentiation of chondrocytes in the growth plate cartilage, and sulfation of the cartilage extracellular matrix. GRK2 loss causes under‐phosphorylation of Smoothened and its exclusion from the cilia, and inhibits Hedgehog pathway. GRK2 loss inhibits canonical Wnt signaling through reduced LRP6 phosphorylation and Frizzled‐βArrestin2 interaction. Graphical Abstract This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome.
doi_str_mv 10.15252/emmm.201911739
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_83076ddc0da44600bc5e023ad4e46b45</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710569853</galeid><doaj_id>oai_doaj_org_article_83076ddc0da44600bc5e023ad4e46b45</doaj_id><sourcerecordid>A710569853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23</originalsourceid><addsrcrecordid>eNqFkt1rFDEUxQdRbF199k0GfPFlt0kmHxMfhFJqW-0iiKJvIZPcmabMJNtkRtn_3my3bruiSCAJye-c5F5OUbzEaIEZYeQIhmFYEIQlxqKSj4pDLJiYU17Tx7u94AfFs5SuEeKM4_ppcVBVBCHK0WHxfTmNenTBp9L58uzzR1IaPSUoP8DkoUxrb2MYoGzWpRtW2kXnu_IcbAdXoSu1txn3wTuj-_KbH8vkOq_7DD0vnrS6T_Dibp0VX9-ffjk5n19-Ors4Ob6cG065nDNODDSNRIRRRGqCeKsx4qbGQGVrGt1KDC2FqmE1qYFgDfka11oyRoQl1ay42PraoK_VKrpBx7UK2qnbgxA7pePoTA-qrpDg1hpkNc3Fo8YwQKTSlgLlDWXZ693WazU1A1gDfoy63zPdv_HuSnXhhxI8q2uUDd7cGcRwM0Ea1eCSgb7XHsKUFKEcV1KKPM-K13-g12GKuXcbiomaMSnoPdXpXIDzbcjvmo2pOhYYMS5rVmVq8RcqDwuDM8FD6_L5nuBoKzAxpBSh3dWIkboNltoES-2ClRWvHrZmx_9OUgbeboGf-a31__zU6XK5fOiOtuK02gQM4n0z_vWhX2Cf5-M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457855974</pqid></control><display><type>article</type><title>Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><creator>Bosakova, Michaela ; Abraham, Sara P ; Nita, Alexandru ; Hruba, Eva ; Buchtova, Marcela ; Taylor, S Paige ; Duran, Ivan ; Martin, Jorge ; Svozilova, Katerina ; Barta, Tomas ; Varecha, Miroslav ; Balek, Lukas ; Kohoutek, Jiri ; Radaszkiewicz, Tomasz ; Pusapati, Ganesh V ; Bryja, Vitezslav ; Rush, Eric T ; Thiffault, Isabelle ; Nickerson, Deborah A ; Bamshad, Michael J ; Rohatgi, Rajat ; Cohn, Daniel H ; Krakow, Deborah ; Krejci, Pavel</creator><creatorcontrib>Bosakova, Michaela ; Abraham, Sara P ; Nita, Alexandru ; Hruba, Eva ; Buchtova, Marcela ; Taylor, S Paige ; Duran, Ivan ; Martin, Jorge ; Svozilova, Katerina ; Barta, Tomas ; Varecha, Miroslav ; Balek, Lukas ; Kohoutek, Jiri ; Radaszkiewicz, Tomasz ; Pusapati, Ganesh V ; Bryja, Vitezslav ; Rush, Eric T ; Thiffault, Isabelle ; Nickerson, Deborah A ; Bamshad, Michael J ; Rohatgi, Rajat ; Cohn, Daniel H ; Krakow, Deborah ; Krejci, Pavel ; University of Washington Center for Mendelian Genomics ; University of Washington Center for Mendelian Genomics</creatorcontrib><description>Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss‐of‐function mutations in the gene encoding adrenergic receptor kinase 1 ( ADRBK1 or GRK2 ). GRK2 cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate. GRK2 null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia‐based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co‐receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies. Synopsis This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome. GRK2 loss leads to bone defects involving the proliferation and hypertrophic differentiation of chondrocytes in the growth plate cartilage, and sulfation of the cartilage extracellular matrix. GRK2 loss causes under‐phosphorylation of Smoothened and its exclusion from the cilia, and inhibits Hedgehog pathway. GRK2 loss inhibits canonical Wnt signaling through reduced LRP6 phosphorylation and Frizzled‐βArrestin2 interaction. Graphical Abstract This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome.</description><identifier>ISSN: 1757-4676</identifier><identifier>EISSN: 1757-4684</identifier><identifier>DOI: 10.15252/emmm.201911739</identifier><identifier>PMID: 33200460</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adrenergic receptors ; asphyxiating thoracic dystrophy ; b-Adrenergic-receptor kinase ; Bones ; Cartilage ; Chondrocytes ; Chondrogenesis ; Cilia ; Cytology ; Development and progression ; Dystrophy ; Ellis-Van Creveld Syndrome ; EMBO11 ; EMBO16 ; EMBO25 ; G-Protein-Coupled Receptor Kinase 2 - genetics ; Gene expression ; Genetic aspects ; GRK2 ; Growth plate ; hedgehog ; Hedgehog protein ; Hedgehog Proteins - genetics ; Hereditary diseases ; Humans ; Hydrops fetalis ; Insects ; Jeune syndrome ; Kinases ; Ligands ; Mutation ; Null cells ; Phosphorylation ; Proteins ; Skeletogenesis ; smoothened ; Thorax ; Vertebrates ; Wnt ; Wnt protein ; Wnt Signaling Pathway</subject><ispartof>EMBO molecular medicine, 2020-11, Vol.12 (11), p.e11739-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23</citedby><cites>FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23</cites><orcidid>0000-0002-9136-5085 ; 0000-0003-0618-9134 ; 0000-0001-9906-4968 ; 0000-0003-4850-9933 ; 0000-0002-7627-0344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2457855974/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2457855974?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33200460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bosakova, Michaela</creatorcontrib><creatorcontrib>Abraham, Sara P</creatorcontrib><creatorcontrib>Nita, Alexandru</creatorcontrib><creatorcontrib>Hruba, Eva</creatorcontrib><creatorcontrib>Buchtova, Marcela</creatorcontrib><creatorcontrib>Taylor, S Paige</creatorcontrib><creatorcontrib>Duran, Ivan</creatorcontrib><creatorcontrib>Martin, Jorge</creatorcontrib><creatorcontrib>Svozilova, Katerina</creatorcontrib><creatorcontrib>Barta, Tomas</creatorcontrib><creatorcontrib>Varecha, Miroslav</creatorcontrib><creatorcontrib>Balek, Lukas</creatorcontrib><creatorcontrib>Kohoutek, Jiri</creatorcontrib><creatorcontrib>Radaszkiewicz, Tomasz</creatorcontrib><creatorcontrib>Pusapati, Ganesh V</creatorcontrib><creatorcontrib>Bryja, Vitezslav</creatorcontrib><creatorcontrib>Rush, Eric T</creatorcontrib><creatorcontrib>Thiffault, Isabelle</creatorcontrib><creatorcontrib>Nickerson, Deborah A</creatorcontrib><creatorcontrib>Bamshad, Michael J</creatorcontrib><creatorcontrib>Rohatgi, Rajat</creatorcontrib><creatorcontrib>Cohn, Daniel H</creatorcontrib><creatorcontrib>Krakow, Deborah</creatorcontrib><creatorcontrib>Krejci, Pavel</creatorcontrib><creatorcontrib>University of Washington Center for Mendelian Genomics</creatorcontrib><creatorcontrib>University of Washington Center for Mendelian Genomics</creatorcontrib><title>Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling</title><title>EMBO molecular medicine</title><addtitle>EMBO Mol Med</addtitle><addtitle>EMBO Mol Med</addtitle><description>Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss‐of‐function mutations in the gene encoding adrenergic receptor kinase 1 ( ADRBK1 or GRK2 ). GRK2 cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate. GRK2 null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia‐based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co‐receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies. Synopsis This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome. GRK2 loss leads to bone defects involving the proliferation and hypertrophic differentiation of chondrocytes in the growth plate cartilage, and sulfation of the cartilage extracellular matrix. GRK2 loss causes under‐phosphorylation of Smoothened and its exclusion from the cilia, and inhibits Hedgehog pathway. GRK2 loss inhibits canonical Wnt signaling through reduced LRP6 phosphorylation and Frizzled‐βArrestin2 interaction. Graphical Abstract This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome.</description><subject>Adrenergic receptors</subject><subject>asphyxiating thoracic dystrophy</subject><subject>b-Adrenergic-receptor kinase</subject><subject>Bones</subject><subject>Cartilage</subject><subject>Chondrocytes</subject><subject>Chondrogenesis</subject><subject>Cilia</subject><subject>Cytology</subject><subject>Development and progression</subject><subject>Dystrophy</subject><subject>Ellis-Van Creveld Syndrome</subject><subject>EMBO11</subject><subject>EMBO16</subject><subject>EMBO25</subject><subject>G-Protein-Coupled Receptor Kinase 2 - genetics</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>GRK2</subject><subject>Growth plate</subject><subject>hedgehog</subject><subject>Hedgehog protein</subject><subject>Hedgehog Proteins - genetics</subject><subject>Hereditary diseases</subject><subject>Humans</subject><subject>Hydrops fetalis</subject><subject>Insects</subject><subject>Jeune syndrome</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Mutation</subject><subject>Null cells</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Skeletogenesis</subject><subject>smoothened</subject><subject>Thorax</subject><subject>Vertebrates</subject><subject>Wnt</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway</subject><issn>1757-4676</issn><issn>1757-4684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkt1rFDEUxQdRbF199k0GfPFlt0kmHxMfhFJqW-0iiKJvIZPcmabMJNtkRtn_3my3bruiSCAJye-c5F5OUbzEaIEZYeQIhmFYEIQlxqKSj4pDLJiYU17Tx7u94AfFs5SuEeKM4_ppcVBVBCHK0WHxfTmNenTBp9L58uzzR1IaPSUoP8DkoUxrb2MYoGzWpRtW2kXnu_IcbAdXoSu1txn3wTuj-_KbH8vkOq_7DD0vnrS6T_Dibp0VX9-ffjk5n19-Ors4Ob6cG065nDNODDSNRIRRRGqCeKsx4qbGQGVrGt1KDC2FqmE1qYFgDfka11oyRoQl1ay42PraoK_VKrpBx7UK2qnbgxA7pePoTA-qrpDg1hpkNc3Fo8YwQKTSlgLlDWXZ693WazU1A1gDfoy63zPdv_HuSnXhhxI8q2uUDd7cGcRwM0Ea1eCSgb7XHsKUFKEcV1KKPM-K13-g12GKuXcbiomaMSnoPdXpXIDzbcjvmo2pOhYYMS5rVmVq8RcqDwuDM8FD6_L5nuBoKzAxpBSh3dWIkboNltoES-2ClRWvHrZmx_9OUgbeboGf-a31__zU6XK5fOiOtuK02gQM4n0z_vWhX2Cf5-M</recordid><startdate>20201106</startdate><enddate>20201106</enddate><creator>Bosakova, Michaela</creator><creator>Abraham, Sara P</creator><creator>Nita, Alexandru</creator><creator>Hruba, Eva</creator><creator>Buchtova, Marcela</creator><creator>Taylor, S Paige</creator><creator>Duran, Ivan</creator><creator>Martin, Jorge</creator><creator>Svozilova, Katerina</creator><creator>Barta, Tomas</creator><creator>Varecha, Miroslav</creator><creator>Balek, Lukas</creator><creator>Kohoutek, Jiri</creator><creator>Radaszkiewicz, Tomasz</creator><creator>Pusapati, Ganesh V</creator><creator>Bryja, Vitezslav</creator><creator>Rush, Eric T</creator><creator>Thiffault, Isabelle</creator><creator>Nickerson, Deborah A</creator><creator>Bamshad, Michael J</creator><creator>Rohatgi, Rajat</creator><creator>Cohn, Daniel H</creator><creator>Krakow, Deborah</creator><creator>Krejci, Pavel</creator><general>Nature Publishing Group UK</general><general>John Wiley &amp; Sons, Inc</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><general>Springer Nature</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9136-5085</orcidid><orcidid>https://orcid.org/0000-0003-0618-9134</orcidid><orcidid>https://orcid.org/0000-0001-9906-4968</orcidid><orcidid>https://orcid.org/0000-0003-4850-9933</orcidid><orcidid>https://orcid.org/0000-0002-7627-0344</orcidid></search><sort><creationdate>20201106</creationdate><title>Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling</title><author>Bosakova, Michaela ; Abraham, Sara P ; Nita, Alexandru ; Hruba, Eva ; Buchtova, Marcela ; Taylor, S Paige ; Duran, Ivan ; Martin, Jorge ; Svozilova, Katerina ; Barta, Tomas ; Varecha, Miroslav ; Balek, Lukas ; Kohoutek, Jiri ; Radaszkiewicz, Tomasz ; Pusapati, Ganesh V ; Bryja, Vitezslav ; Rush, Eric T ; Thiffault, Isabelle ; Nickerson, Deborah A ; Bamshad, Michael J ; Rohatgi, Rajat ; Cohn, Daniel H ; Krakow, Deborah ; Krejci, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adrenergic receptors</topic><topic>asphyxiating thoracic dystrophy</topic><topic>b-Adrenergic-receptor kinase</topic><topic>Bones</topic><topic>Cartilage</topic><topic>Chondrocytes</topic><topic>Chondrogenesis</topic><topic>Cilia</topic><topic>Cytology</topic><topic>Development and progression</topic><topic>Dystrophy</topic><topic>Ellis-Van Creveld Syndrome</topic><topic>EMBO11</topic><topic>EMBO16</topic><topic>EMBO25</topic><topic>G-Protein-Coupled Receptor Kinase 2 - genetics</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>GRK2</topic><topic>Growth plate</topic><topic>hedgehog</topic><topic>Hedgehog protein</topic><topic>Hedgehog Proteins - genetics</topic><topic>Hereditary diseases</topic><topic>Humans</topic><topic>Hydrops fetalis</topic><topic>Insects</topic><topic>Jeune syndrome</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Mutation</topic><topic>Null cells</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Skeletogenesis</topic><topic>smoothened</topic><topic>Thorax</topic><topic>Vertebrates</topic><topic>Wnt</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosakova, Michaela</creatorcontrib><creatorcontrib>Abraham, Sara P</creatorcontrib><creatorcontrib>Nita, Alexandru</creatorcontrib><creatorcontrib>Hruba, Eva</creatorcontrib><creatorcontrib>Buchtova, Marcela</creatorcontrib><creatorcontrib>Taylor, S Paige</creatorcontrib><creatorcontrib>Duran, Ivan</creatorcontrib><creatorcontrib>Martin, Jorge</creatorcontrib><creatorcontrib>Svozilova, Katerina</creatorcontrib><creatorcontrib>Barta, Tomas</creatorcontrib><creatorcontrib>Varecha, Miroslav</creatorcontrib><creatorcontrib>Balek, Lukas</creatorcontrib><creatorcontrib>Kohoutek, Jiri</creatorcontrib><creatorcontrib>Radaszkiewicz, Tomasz</creatorcontrib><creatorcontrib>Pusapati, Ganesh V</creatorcontrib><creatorcontrib>Bryja, Vitezslav</creatorcontrib><creatorcontrib>Rush, Eric T</creatorcontrib><creatorcontrib>Thiffault, Isabelle</creatorcontrib><creatorcontrib>Nickerson, Deborah A</creatorcontrib><creatorcontrib>Bamshad, Michael J</creatorcontrib><creatorcontrib>Rohatgi, Rajat</creatorcontrib><creatorcontrib>Cohn, Daniel H</creatorcontrib><creatorcontrib>Krakow, Deborah</creatorcontrib><creatorcontrib>Krejci, Pavel</creatorcontrib><creatorcontrib>University of Washington Center for Mendelian Genomics</creatorcontrib><creatorcontrib>University of Washington Center for Mendelian Genomics</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library website</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>EMBO molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosakova, Michaela</au><au>Abraham, Sara P</au><au>Nita, Alexandru</au><au>Hruba, Eva</au><au>Buchtova, Marcela</au><au>Taylor, S Paige</au><au>Duran, Ivan</au><au>Martin, Jorge</au><au>Svozilova, Katerina</au><au>Barta, Tomas</au><au>Varecha, Miroslav</au><au>Balek, Lukas</au><au>Kohoutek, Jiri</au><au>Radaszkiewicz, Tomasz</au><au>Pusapati, Ganesh V</au><au>Bryja, Vitezslav</au><au>Rush, Eric T</au><au>Thiffault, Isabelle</au><au>Nickerson, Deborah A</au><au>Bamshad, Michael J</au><au>Rohatgi, Rajat</au><au>Cohn, Daniel H</au><au>Krakow, Deborah</au><au>Krejci, Pavel</au><aucorp>University of Washington Center for Mendelian Genomics</aucorp><aucorp>University of Washington Center for Mendelian Genomics</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling</atitle><jtitle>EMBO molecular medicine</jtitle><stitle>EMBO Mol Med</stitle><addtitle>EMBO Mol Med</addtitle><date>2020-11-06</date><risdate>2020</risdate><volume>12</volume><issue>11</issue><spage>e11739</spage><epage>n/a</epage><pages>e11739-n/a</pages><issn>1757-4676</issn><eissn>1757-4684</eissn><abstract>Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss‐of‐function mutations in the gene encoding adrenergic receptor kinase 1 ( ADRBK1 or GRK2 ). GRK2 cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate. GRK2 null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia‐based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co‐receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies. Synopsis This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome. GRK2 loss leads to bone defects involving the proliferation and hypertrophic differentiation of chondrocytes in the growth plate cartilage, and sulfation of the cartilage extracellular matrix. GRK2 loss causes under‐phosphorylation of Smoothened and its exclusion from the cilia, and inhibits Hedgehog pathway. GRK2 loss inhibits canonical Wnt signaling through reduced LRP6 phosphorylation and Frizzled‐βArrestin2 interaction. Graphical Abstract This study identifies GRK2 as a regulator of human skeletogenesis. Loss of GRK2 deregulates the function of two major morphogens in the bone ‐ Hedgehog and canonical Wnt signaling, and manifests in autosomal recessive skeletal ciliopathy syndrome, asphyxiating thoracic dystrophy or Jeune syndrome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33200460</pmid><doi>10.15252/emmm.201911739</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9136-5085</orcidid><orcidid>https://orcid.org/0000-0003-0618-9134</orcidid><orcidid>https://orcid.org/0000-0001-9906-4968</orcidid><orcidid>https://orcid.org/0000-0003-4850-9933</orcidid><orcidid>https://orcid.org/0000-0002-7627-0344</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-4676
ispartof EMBO molecular medicine, 2020-11, Vol.12 (11), p.e11739-n/a
issn 1757-4676
1757-4684
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_83076ddc0da44600bc5e023ad4e46b45
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Online Library Open Access; PubMed Central
subjects Adrenergic receptors
asphyxiating thoracic dystrophy
b-Adrenergic-receptor kinase
Bones
Cartilage
Chondrocytes
Chondrogenesis
Cilia
Cytology
Development and progression
Dystrophy
Ellis-Van Creveld Syndrome
EMBO11
EMBO16
EMBO25
G-Protein-Coupled Receptor Kinase 2 - genetics
Gene expression
Genetic aspects
GRK2
Growth plate
hedgehog
Hedgehog protein
Hedgehog Proteins - genetics
Hereditary diseases
Humans
Hydrops fetalis
Insects
Jeune syndrome
Kinases
Ligands
Mutation
Null cells
Phosphorylation
Proteins
Skeletogenesis
smoothened
Thorax
Vertebrates
Wnt
Wnt protein
Wnt Signaling Pathway
title Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutations%20in%20GRK2%20cause%20Jeune%20syndrome%20by%20impairing%20Hedgehog%20and%20canonical%20Wnt%20signaling&rft.jtitle=EMBO%20molecular%20medicine&rft.au=Bosakova,%20Michaela&rft.aucorp=University%20of%20Washington%20Center%20for%20Mendelian%20Genomics&rft.date=2020-11-06&rft.volume=12&rft.issue=11&rft.spage=e11739&rft.epage=n/a&rft.pages=e11739-n/a&rft.issn=1757-4676&rft.eissn=1757-4684&rft_id=info:doi/10.15252/emmm.201911739&rft_dat=%3Cgale_doaj_%3EA710569853%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6469-562cebb90254028206fa106c81e49fcbaf91ef4e3b5828e21ae10618a95527d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2457855974&rft_id=info:pmid/33200460&rft_galeid=A710569853&rfr_iscdi=true