Loading…

Consensus-based distributed adaptive target tracking in camera networks using Integrated Probabilistic Data Association

In this paper, a novel consensus-based adaptive algorithm for distributed target tracking in large scale camera networks is presented, aimed at situations characterized by limited sensing range, high-level clutter, and possibly occulted targets. The concept of Integrated Probabilistic Data Associati...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on advances in signal processing 2018-02, Vol.2018 (1), p.1-16, Article 13
Main Authors: Ali, Khaled Obaid Al, Ilić, Nemanja, Stanković, Miloš S., Stanković, Srdjan S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-ed580cfcebd65dd05b6cf79ca9ae0f3735547944556a2907359253343ce508863
cites cdi_FETCH-LOGICAL-c436t-ed580cfcebd65dd05b6cf79ca9ae0f3735547944556a2907359253343ce508863
container_end_page 16
container_issue 1
container_start_page 1
container_title EURASIP journal on advances in signal processing
container_volume 2018
creator Ali, Khaled Obaid Al
Ilić, Nemanja
Stanković, Miloš S.
Stanković, Srdjan S.
description In this paper, a novel consensus-based adaptive algorithm for distributed target tracking in large scale camera networks is presented, aimed at situations characterized by limited sensing range, high-level clutter, and possibly occulted targets. The concept of Integrated Probabilistic Data Association (IPDA) is introduced in the distributed adaptive tracker design so that the proposed algorithm, named IPDA Adaptive Consensus Filter (IPDA-ACF), incorporates probabilities of acquiring target-originated measurements, conditioned on either target perceivability or target existence. A distributed adaptation scheme represents the core element of the algorithm, allowing fast convergence under a large variety of operating conditions, emphasizing the influence of the nodes with the highest probability of obtaining target-originated measurements. A theoretical analysis of stability and reduction of noise influence allows getting an insight into the relationship between the local trackers and the global consensus scheme. A comparison with analogous existing methods done by extensive simulations shows that the proposed method achieves the best performance, in spite of lower communication and computation requirements.
doi_str_mv 10.1186/s13634-018-0534-z
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8323897aed1445f78192776e9ff1aa15</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A704304235</galeid><doaj_id>oai_doaj_org_article_8323897aed1445f78192776e9ff1aa15</doaj_id><sourcerecordid>A704304235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-ed580cfcebd65dd05b6cf79ca9ae0f3735547944556a2907359253343ce508863</originalsourceid><addsrcrecordid>eNp9kd2OFCEQhTtmTdxdfQDveIFeoWl--nIy_k2yiV7oNamGosPsDGyAceM-vbRtjFeGCw5FfSeVOl33ltE7xrR8VxiXfOwp0z0VTTy_6K6Z1KqXTNOrf_Sr7qaUI6VCDnS47p72KRaM5VL6GQo64kKpOcyX2jQ4eKzhB5IKecFKagb7EOJCQiQWzpiBRKxPKT8UcinrxyFWXDKs8NecZpjDqfkFS95DBbIrJdkANaT4unvp4VTwzZ_7tvv-8cO3_ef-_sunw35339uRy9qjE5pab3F2UjhHxSytV5OFCZB6rrgQo5rGUQgJw0TbexoE5yO3KKjWkt92h83XJTiaxxzOkH-aBMH8LqS8GMhtwBMazQeuJwXoWDP0SrNpUEri5D0DYKJ53W1eC7T2EH1aF9KOw3OwKaIPrb5TdOR0HPgKsA2wOZWS0f8dgFGzxma22EyLzayxmefGDBtTWm9cMJtjuuTYdvQf6Bfdlpyt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Consensus-based distributed adaptive target tracking in camera networks using Integrated Probabilistic Data Association</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Ali, Khaled Obaid Al ; Ilić, Nemanja ; Stanković, Miloš S. ; Stanković, Srdjan S.</creator><creatorcontrib>Ali, Khaled Obaid Al ; Ilić, Nemanja ; Stanković, Miloš S. ; Stanković, Srdjan S.</creatorcontrib><description>In this paper, a novel consensus-based adaptive algorithm for distributed target tracking in large scale camera networks is presented, aimed at situations characterized by limited sensing range, high-level clutter, and possibly occulted targets. The concept of Integrated Probabilistic Data Association (IPDA) is introduced in the distributed adaptive tracker design so that the proposed algorithm, named IPDA Adaptive Consensus Filter (IPDA-ACF), incorporates probabilities of acquiring target-originated measurements, conditioned on either target perceivability or target existence. A distributed adaptation scheme represents the core element of the algorithm, allowing fast convergence under a large variety of operating conditions, emphasizing the influence of the nodes with the highest probability of obtaining target-originated measurements. A theoretical analysis of stability and reduction of noise influence allows getting an insight into the relationship between the local trackers and the global consensus scheme. A comparison with analogous existing methods done by extensive simulations shows that the proposed method achieves the best performance, in spite of lower communication and computation requirements.</description><identifier>ISSN: 1687-6180</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1186/s13634-018-0534-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Associations, institutions, etc ; Camera networks ; Consensus ; Decentralized adaptation ; Distributed target tracking ; Engineering ; Integrated Probabilistic Data Association ; Quantum Information Technology ; Signal,Image and Speech Processing ; Societies ; Spintronics</subject><ispartof>EURASIP journal on advances in signal processing, 2018-02, Vol.2018 (1), p.1-16, Article 13</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-ed580cfcebd65dd05b6cf79ca9ae0f3735547944556a2907359253343ce508863</citedby><cites>FETCH-LOGICAL-c436t-ed580cfcebd65dd05b6cf79ca9ae0f3735547944556a2907359253343ce508863</cites><orcidid>0000-0002-2763-2564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ali, Khaled Obaid Al</creatorcontrib><creatorcontrib>Ilić, Nemanja</creatorcontrib><creatorcontrib>Stanković, Miloš S.</creatorcontrib><creatorcontrib>Stanković, Srdjan S.</creatorcontrib><title>Consensus-based distributed adaptive target tracking in camera networks using Integrated Probabilistic Data Association</title><title>EURASIP journal on advances in signal processing</title><addtitle>EURASIP J. Adv. Signal Process</addtitle><description>In this paper, a novel consensus-based adaptive algorithm for distributed target tracking in large scale camera networks is presented, aimed at situations characterized by limited sensing range, high-level clutter, and possibly occulted targets. The concept of Integrated Probabilistic Data Association (IPDA) is introduced in the distributed adaptive tracker design so that the proposed algorithm, named IPDA Adaptive Consensus Filter (IPDA-ACF), incorporates probabilities of acquiring target-originated measurements, conditioned on either target perceivability or target existence. A distributed adaptation scheme represents the core element of the algorithm, allowing fast convergence under a large variety of operating conditions, emphasizing the influence of the nodes with the highest probability of obtaining target-originated measurements. A theoretical analysis of stability and reduction of noise influence allows getting an insight into the relationship between the local trackers and the global consensus scheme. A comparison with analogous existing methods done by extensive simulations shows that the proposed method achieves the best performance, in spite of lower communication and computation requirements.</description><subject>Algorithms</subject><subject>Associations, institutions, etc</subject><subject>Camera networks</subject><subject>Consensus</subject><subject>Decentralized adaptation</subject><subject>Distributed target tracking</subject><subject>Engineering</subject><subject>Integrated Probabilistic Data Association</subject><subject>Quantum Information Technology</subject><subject>Signal,Image and Speech Processing</subject><subject>Societies</subject><subject>Spintronics</subject><issn>1687-6180</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kd2OFCEQhTtmTdxdfQDveIFeoWl--nIy_k2yiV7oNamGosPsDGyAceM-vbRtjFeGCw5FfSeVOl33ltE7xrR8VxiXfOwp0z0VTTy_6K6Z1KqXTNOrf_Sr7qaUI6VCDnS47p72KRaM5VL6GQo64kKpOcyX2jQ4eKzhB5IKecFKagb7EOJCQiQWzpiBRKxPKT8UcinrxyFWXDKs8NecZpjDqfkFS95DBbIrJdkANaT4unvp4VTwzZ_7tvv-8cO3_ef-_sunw35339uRy9qjE5pab3F2UjhHxSytV5OFCZB6rrgQo5rGUQgJw0TbexoE5yO3KKjWkt92h83XJTiaxxzOkH-aBMH8LqS8GMhtwBMazQeuJwXoWDP0SrNpUEri5D0DYKJ53W1eC7T2EH1aF9KOw3OwKaIPrb5TdOR0HPgKsA2wOZWS0f8dgFGzxma22EyLzayxmefGDBtTWm9cMJtjuuTYdvQf6Bfdlpyt</recordid><startdate>20180222</startdate><enddate>20180222</enddate><creator>Ali, Khaled Obaid Al</creator><creator>Ilić, Nemanja</creator><creator>Stanković, Miloš S.</creator><creator>Stanković, Srdjan S.</creator><general>Springer International Publishing</general><general>Springer</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2763-2564</orcidid></search><sort><creationdate>20180222</creationdate><title>Consensus-based distributed adaptive target tracking in camera networks using Integrated Probabilistic Data Association</title><author>Ali, Khaled Obaid Al ; Ilić, Nemanja ; Stanković, Miloš S. ; Stanković, Srdjan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-ed580cfcebd65dd05b6cf79ca9ae0f3735547944556a2907359253343ce508863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Associations, institutions, etc</topic><topic>Camera networks</topic><topic>Consensus</topic><topic>Decentralized adaptation</topic><topic>Distributed target tracking</topic><topic>Engineering</topic><topic>Integrated Probabilistic Data Association</topic><topic>Quantum Information Technology</topic><topic>Signal,Image and Speech Processing</topic><topic>Societies</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Khaled Obaid Al</creatorcontrib><creatorcontrib>Ilić, Nemanja</creatorcontrib><creatorcontrib>Stanković, Miloš S.</creatorcontrib><creatorcontrib>Stanković, Srdjan S.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EURASIP journal on advances in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Khaled Obaid Al</au><au>Ilić, Nemanja</au><au>Stanković, Miloš S.</au><au>Stanković, Srdjan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consensus-based distributed adaptive target tracking in camera networks using Integrated Probabilistic Data Association</atitle><jtitle>EURASIP journal on advances in signal processing</jtitle><stitle>EURASIP J. Adv. Signal Process</stitle><date>2018-02-22</date><risdate>2018</risdate><volume>2018</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>13</artnum><issn>1687-6180</issn><eissn>1687-6180</eissn><abstract>In this paper, a novel consensus-based adaptive algorithm for distributed target tracking in large scale camera networks is presented, aimed at situations characterized by limited sensing range, high-level clutter, and possibly occulted targets. The concept of Integrated Probabilistic Data Association (IPDA) is introduced in the distributed adaptive tracker design so that the proposed algorithm, named IPDA Adaptive Consensus Filter (IPDA-ACF), incorporates probabilities of acquiring target-originated measurements, conditioned on either target perceivability or target existence. A distributed adaptation scheme represents the core element of the algorithm, allowing fast convergence under a large variety of operating conditions, emphasizing the influence of the nodes with the highest probability of obtaining target-originated measurements. A theoretical analysis of stability and reduction of noise influence allows getting an insight into the relationship between the local trackers and the global consensus scheme. A comparison with analogous existing methods done by extensive simulations shows that the proposed method achieves the best performance, in spite of lower communication and computation requirements.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13634-018-0534-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2763-2564</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-6180
ispartof EURASIP journal on advances in signal processing, 2018-02, Vol.2018 (1), p.1-16, Article 13
issn 1687-6180
1687-6180
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8323897aed1445f78192776e9ff1aa15
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Algorithms
Associations, institutions, etc
Camera networks
Consensus
Decentralized adaptation
Distributed target tracking
Engineering
Integrated Probabilistic Data Association
Quantum Information Technology
Signal,Image and Speech Processing
Societies
Spintronics
title Consensus-based distributed adaptive target tracking in camera networks using Integrated Probabilistic Data Association
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consensus-based%20distributed%20adaptive%20target%20tracking%20in%20camera%20networks%20using%20Integrated%20Probabilistic%20Data%20Association&rft.jtitle=EURASIP%20journal%20on%20advances%20in%20signal%20processing&rft.au=Ali,%20Khaled%20Obaid%20Al&rft.date=2018-02-22&rft.volume=2018&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=13&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1186/s13634-018-0534-z&rft_dat=%3Cgale_doaj_%3EA704304235%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-ed580cfcebd65dd05b6cf79ca9ae0f3735547944556a2907359253343ce508863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A704304235&rfr_iscdi=true