Loading…
Korean Tourist Spot Multi-Modal Dataset for Deep Learning Applications
Recently, deep learning-based methods for solving multi-modal tasks such as image captioning, multi-modal classification, and cross-modal retrieval have attracted much attention. To apply deep learning for such tasks, large amounts of data are needed for training. However, although there are several...
Saved in:
Published in: | Data (Basel) 2019-12, Vol.4 (4), p.139 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, deep learning-based methods for solving multi-modal tasks such as image captioning, multi-modal classification, and cross-modal retrieval have attracted much attention. To apply deep learning for such tasks, large amounts of data are needed for training. However, although there are several Korean single-modal datasets, there are not enough Korean multi-modal datasets. In this paper, we introduce a KTS (Korean tourist spot) dataset for Korean multi-modal deep-learning research. The KTS dataset has four modalities (image, text, hashtags, and likes) and consists of 10 classes related to Korean tourist spots. All data were extracted from Instagram and preprocessed. We performed two experiments, image classification and image captioning with the dataset, and they showed appropriate results. We hope that many researchers will use this dataset for multi-modal deep-learning research. |
---|---|
ISSN: | 2306-5729 2306-5729 |
DOI: | 10.3390/data4040139 |