Loading…

Merging Counter-Propagation and Back-Propagation Algorithms: Overcoming the Limitations of Counter-Propagation Neural Network Models

Artificial neural networks (ANNs) are nowadays applied as the most efficient methods in the majority of machine learning approaches, including data-driven modeling for assessment of the toxicity of chemicals. We developed a combined neural network methodology that can be used in the scope of new app...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2024-04, Vol.25 (8), p.4156
Main Authors: Drgan, Viktor, Venko, Katja, Sluga, Janja, Novič, Marjana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c349t-bfbe872f19ec2994cda52c93249a532c22f64dc3d68ed86c2666720fafa910223
container_end_page
container_issue 8
container_start_page 4156
container_title International journal of molecular sciences
container_volume 25
creator Drgan, Viktor
Venko, Katja
Sluga, Janja
Novič, Marjana
description Artificial neural networks (ANNs) are nowadays applied as the most efficient methods in the majority of machine learning approaches, including data-driven modeling for assessment of the toxicity of chemicals. We developed a combined neural network methodology that can be used in the scope of new approach methodologies (NAMs) assessing chemical or drug toxicity. Here, we present QSAR models for predicting the physical and biochemical properties of molecules of three different datasets: aqueous solubility, acute fish toxicity toward fat head minnow, and bio-concentration factors. A novel neural network modeling method is developed by combining two neural network algorithms, namely, the counter-propagation modeling strategy (CP-ANN) with the back-propagation-of-errors algorithm (BPE-ANN). The advantage is a short training time, robustness, and good interpretability through the initial CP-ANN part, while the extension with BPE-ANN improves the precision of predictions in the range between minimal and maximal property values of the training data, regardless of the number of neurons in both neural networks, either CP-ANN or BPE-ANN.
doi_str_mv 10.3390/ijms25084156
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8375993fbb444d4dab4c62afb87629ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793026049</galeid><doaj_id>oai_doaj_org_article_8375993fbb444d4dab4c62afb87629ce</doaj_id><sourcerecordid>A793026049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-bfbe872f19ec2994cda52c93249a532c22f64dc3d68ed86c2666720fafa910223</originalsourceid><addsrcrecordid>eNptkktv1DAUhSMEoqWwY40isWFBin3tODG7YcSj0pSygHV040fqaRJPbQfEnh-Op1OqgpAX1zr6zrGvdIriOSWnjEnyxm2nCDVpOa3Fg-KYcoCKENE8vHc_Kp7EuCUEGNTycXHEWtGwhsNx8evchMHNQ7n2y5xMqL4Ev8MBk_NzibMu36G6-ktcjYMPLl1O8W158d0E5ae9P12acuMml26oWHr738jPZgk45pF--HBVnnttxvi0eGRxjObZ7Twpvn14_3X9qdpcfDxbrzaVYlymqre9aRuwVBoFUnKlsQYlGXCJNQMFYAXXimnRGt0KBUKIBohFi5ISAHZSnB1ytcdttwtuwvCz8-i6G8GHocOQnBpN17KmlpLZvueca66x50oA2r5tBEhlctarQ9Yu-OvFxNRNLiozjjgbv8SOEd7ImlAmMvryH3TrlzDnTfeUkBTqlmbq9EANmN93s_UpoMpHm8kpPxvrsr5qJCMgCJfZ8PpgUMHHGIy924iSbl-N7n41Mv7i9hdLPxl9B__pAvsNZVm1WQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046912581</pqid></control><display><type>article</type><title>Merging Counter-Propagation and Back-Propagation Algorithms: Overcoming the Limitations of Counter-Propagation Neural Network Models</title><source>Publicly Available Content Database</source><source>PMC (PubMed Central)</source><creator>Drgan, Viktor ; Venko, Katja ; Sluga, Janja ; Novič, Marjana</creator><creatorcontrib>Drgan, Viktor ; Venko, Katja ; Sluga, Janja ; Novič, Marjana</creatorcontrib><description>Artificial neural networks (ANNs) are nowadays applied as the most efficient methods in the majority of machine learning approaches, including data-driven modeling for assessment of the toxicity of chemicals. We developed a combined neural network methodology that can be used in the scope of new approach methodologies (NAMs) assessing chemical or drug toxicity. Here, we present QSAR models for predicting the physical and biochemical properties of molecules of three different datasets: aqueous solubility, acute fish toxicity toward fat head minnow, and bio-concentration factors. A novel neural network modeling method is developed by combining two neural network algorithms, namely, the counter-propagation modeling strategy (CP-ANN) with the back-propagation-of-errors algorithm (BPE-ANN). The advantage is a short training time, robustness, and good interpretability through the initial CP-ANN part, while the extension with BPE-ANN improves the precision of predictions in the range between minimal and maximal property values of the training data, regardless of the number of neurons in both neural networks, either CP-ANN or BPE-ANN.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms25084156</identifier><identifier>PMID: 38673742</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Analysis ; Animals ; Artificial intelligence ; Back propagation ; back-propagation-error BPE-ANN ; cheminformatics tool ; counter-propagation CP-ANN ; Datasets ; Fishes ; Machine Learning ; Neural networks ; Neural Networks, Computer ; Neurons ; Propagation ; QSAR model ; Quantitative Structure-Activity Relationship ; Toxicity ; water solubility</subject><ispartof>International journal of molecular sciences, 2024-04, Vol.25 (8), p.4156</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-bfbe872f19ec2994cda52c93249a532c22f64dc3d68ed86c2666720fafa910223</cites><orcidid>0000-0002-7838-234X ; 0000-0001-7430-2800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3046912581/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3046912581?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38673742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drgan, Viktor</creatorcontrib><creatorcontrib>Venko, Katja</creatorcontrib><creatorcontrib>Sluga, Janja</creatorcontrib><creatorcontrib>Novič, Marjana</creatorcontrib><title>Merging Counter-Propagation and Back-Propagation Algorithms: Overcoming the Limitations of Counter-Propagation Neural Network Models</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Artificial neural networks (ANNs) are nowadays applied as the most efficient methods in the majority of machine learning approaches, including data-driven modeling for assessment of the toxicity of chemicals. We developed a combined neural network methodology that can be used in the scope of new approach methodologies (NAMs) assessing chemical or drug toxicity. Here, we present QSAR models for predicting the physical and biochemical properties of molecules of three different datasets: aqueous solubility, acute fish toxicity toward fat head minnow, and bio-concentration factors. A novel neural network modeling method is developed by combining two neural network algorithms, namely, the counter-propagation modeling strategy (CP-ANN) with the back-propagation-of-errors algorithm (BPE-ANN). The advantage is a short training time, robustness, and good interpretability through the initial CP-ANN part, while the extension with BPE-ANN improves the precision of predictions in the range between minimal and maximal property values of the training data, regardless of the number of neurons in both neural networks, either CP-ANN or BPE-ANN.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Animals</subject><subject>Artificial intelligence</subject><subject>Back propagation</subject><subject>back-propagation-error BPE-ANN</subject><subject>cheminformatics tool</subject><subject>counter-propagation CP-ANN</subject><subject>Datasets</subject><subject>Fishes</subject><subject>Machine Learning</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Neurons</subject><subject>Propagation</subject><subject>QSAR model</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Toxicity</subject><subject>water solubility</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAUhSMEoqWwY40isWFBin3tODG7YcSj0pSygHV040fqaRJPbQfEnh-Op1OqgpAX1zr6zrGvdIriOSWnjEnyxm2nCDVpOa3Fg-KYcoCKENE8vHc_Kp7EuCUEGNTycXHEWtGwhsNx8evchMHNQ7n2y5xMqL4Ev8MBk_NzibMu36G6-ktcjYMPLl1O8W158d0E5ae9P12acuMml26oWHr738jPZgk45pF--HBVnnttxvi0eGRxjObZ7Twpvn14_3X9qdpcfDxbrzaVYlymqre9aRuwVBoFUnKlsQYlGXCJNQMFYAXXimnRGt0KBUKIBohFi5ISAHZSnB1ytcdttwtuwvCz8-i6G8GHocOQnBpN17KmlpLZvueca66x50oA2r5tBEhlctarQ9Yu-OvFxNRNLiozjjgbv8SOEd7ImlAmMvryH3TrlzDnTfeUkBTqlmbq9EANmN93s_UpoMpHm8kpPxvrsr5qJCMgCJfZ8PpgUMHHGIy924iSbl-N7n41Mv7i9hdLPxl9B__pAvsNZVm1WQ</recordid><startdate>20240409</startdate><enddate>20240409</enddate><creator>Drgan, Viktor</creator><creator>Venko, Katja</creator><creator>Sluga, Janja</creator><creator>Novič, Marjana</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7838-234X</orcidid><orcidid>https://orcid.org/0000-0001-7430-2800</orcidid></search><sort><creationdate>20240409</creationdate><title>Merging Counter-Propagation and Back-Propagation Algorithms: Overcoming the Limitations of Counter-Propagation Neural Network Models</title><author>Drgan, Viktor ; Venko, Katja ; Sluga, Janja ; Novič, Marjana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-bfbe872f19ec2994cda52c93249a532c22f64dc3d68ed86c2666720fafa910223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Animals</topic><topic>Artificial intelligence</topic><topic>Back propagation</topic><topic>back-propagation-error BPE-ANN</topic><topic>cheminformatics tool</topic><topic>counter-propagation CP-ANN</topic><topic>Datasets</topic><topic>Fishes</topic><topic>Machine Learning</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Neurons</topic><topic>Propagation</topic><topic>QSAR model</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Toxicity</topic><topic>water solubility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drgan, Viktor</creatorcontrib><creatorcontrib>Venko, Katja</creatorcontrib><creatorcontrib>Sluga, Janja</creatorcontrib><creatorcontrib>Novič, Marjana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Health and Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drgan, Viktor</au><au>Venko, Katja</au><au>Sluga, Janja</au><au>Novič, Marjana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Merging Counter-Propagation and Back-Propagation Algorithms: Overcoming the Limitations of Counter-Propagation Neural Network Models</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2024-04-09</date><risdate>2024</risdate><volume>25</volume><issue>8</issue><spage>4156</spage><pages>4156-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Artificial neural networks (ANNs) are nowadays applied as the most efficient methods in the majority of machine learning approaches, including data-driven modeling for assessment of the toxicity of chemicals. We developed a combined neural network methodology that can be used in the scope of new approach methodologies (NAMs) assessing chemical or drug toxicity. Here, we present QSAR models for predicting the physical and biochemical properties of molecules of three different datasets: aqueous solubility, acute fish toxicity toward fat head minnow, and bio-concentration factors. A novel neural network modeling method is developed by combining two neural network algorithms, namely, the counter-propagation modeling strategy (CP-ANN) with the back-propagation-of-errors algorithm (BPE-ANN). The advantage is a short training time, robustness, and good interpretability through the initial CP-ANN part, while the extension with BPE-ANN improves the precision of predictions in the range between minimal and maximal property values of the training data, regardless of the number of neurons in both neural networks, either CP-ANN or BPE-ANN.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38673742</pmid><doi>10.3390/ijms25084156</doi><orcidid>https://orcid.org/0000-0002-7838-234X</orcidid><orcidid>https://orcid.org/0000-0001-7430-2800</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2024-04, Vol.25 (8), p.4156
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8375993fbb444d4dab4c62afb87629ce
source Publicly Available Content Database; PMC (PubMed Central)
subjects Algorithms
Analysis
Animals
Artificial intelligence
Back propagation
back-propagation-error BPE-ANN
cheminformatics tool
counter-propagation CP-ANN
Datasets
Fishes
Machine Learning
Neural networks
Neural Networks, Computer
Neurons
Propagation
QSAR model
Quantitative Structure-Activity Relationship
Toxicity
water solubility
title Merging Counter-Propagation and Back-Propagation Algorithms: Overcoming the Limitations of Counter-Propagation Neural Network Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Merging%20Counter-Propagation%20and%20Back-Propagation%20Algorithms:%20Overcoming%20the%20Limitations%20of%20Counter-Propagation%20Neural%20Network%20Models&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Drgan,%20Viktor&rft.date=2024-04-09&rft.volume=25&rft.issue=8&rft.spage=4156&rft.pages=4156-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms25084156&rft_dat=%3Cgale_doaj_%3EA793026049%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-bfbe872f19ec2994cda52c93249a532c22f64dc3d68ed86c2666720fafa910223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046912581&rft_id=info:pmid/38673742&rft_galeid=A793026049&rfr_iscdi=true