Loading…

A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition

Human activity recognition (HAR) remains an essential field of research with increasing real-world applications ranging from healthcare to industrial environments. As the volume of publications in this domain continues to grow, staying abreast of the most pertinent and innovative methodologies can b...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning and knowledge extraction 2024-06, Vol.6 (2), p.842-876
Main Authors: Kaseris, Michail, Kostavelis, Ioannis, Malassiotis, Sotiris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c291t-f26c0cd8b7b54bff66c4a6e27c46185669a73276426da17e7bab73a5f9d4eecf3
container_end_page 876
container_issue 2
container_start_page 842
container_title Machine learning and knowledge extraction
container_volume 6
creator Kaseris, Michail
Kostavelis, Ioannis
Malassiotis, Sotiris
description Human activity recognition (HAR) remains an essential field of research with increasing real-world applications ranging from healthcare to industrial environments. As the volume of publications in this domain continues to grow, staying abreast of the most pertinent and innovative methodologies can be challenging. This survey provides a comprehensive overview of the state-of-the-art methods employed in HAR, embracing both classical machine learning techniques and their recent advancements. We investigate a plethora of approaches that leverage diverse input modalities including, but not limited to, accelerometer data, video sequences, and audio signals. Recognizing the challenge of navigating the vast and ever-growing HAR literature, we introduce a novel methodology that employs large language models to efficiently filter and pinpoint relevant academic papers. This not only reduces manual effort but also ensures the inclusion of the most influential works. We also provide a taxonomy of the examined literature to enable scholars to have rapid and organized access when studying HAR approaches. Through this survey, we aim to inform researchers and practitioners with a holistic understanding of the current HAR landscape, its evolution, and the promising avenues for future exploration.
doi_str_mv 10.3390/make6020040
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8393236a93254975ae39fa93d0d1528f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799626592</galeid><doaj_id>oai_doaj_org_article_8393236a93254975ae39fa93d0d1528f</doaj_id><sourcerecordid>A799626592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f26c0cd8b7b54bff66c4a6e27c46185669a73276426da17e7bab73a5f9d4eecf3</originalsourceid><addsrcrecordid>eNpNUV1LIzEUHWQXFLdP-wcCPkr1TpJJJo-lu6tCRdiP53Anc1NTnaRmpoX-e6NdRC7cj8M5hwO3qr7XcCWEgesBn0gBB5BwUp3xBuRcGgNfPu2n1WwcNwDAtZE1yLPqfsGWadhmeqQ4hj2xP7u8pwNLkf0g2rIVYY4hrtk9TY-pH1mI7HY3YGQLN4V9mA7sN7m0jmEKKX6rvnp8Hmn2f55X_379_Lu8na8ebu6Wi9XccVNPc8-VA9e3ne4a2XmvlJOoiGsnVd02ShnUgmslueqx1qQ77LTAxpteEjkvzqu7o2-fcGO3OQyYDzZhsO9AymuLeQrumWwrjOBCYemNNLpBEsaXq4e-bnj75nVx9Nrm9LKjcbKbtMuxxLcCNBctGKMK6-rIWmMxDdGnKaMr1dMQXIrkQ8EXunC5agwvgsujwOU0jpn8R8wa7Nu_7Kd_iVffpoZz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072380996</pqid></control><display><type>article</type><title>A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Kaseris, Michail ; Kostavelis, Ioannis ; Malassiotis, Sotiris</creator><creatorcontrib>Kaseris, Michail ; Kostavelis, Ioannis ; Malassiotis, Sotiris</creatorcontrib><description>Human activity recognition (HAR) remains an essential field of research with increasing real-world applications ranging from healthcare to industrial environments. As the volume of publications in this domain continues to grow, staying abreast of the most pertinent and innovative methodologies can be challenging. This survey provides a comprehensive overview of the state-of-the-art methods employed in HAR, embracing both classical machine learning techniques and their recent advancements. We investigate a plethora of approaches that leverage diverse input modalities including, but not limited to, accelerometer data, video sequences, and audio signals. Recognizing the challenge of navigating the vast and ever-growing HAR literature, we introduce a novel methodology that employs large language models to efficiently filter and pinpoint relevant academic papers. This not only reduces manual effort but also ensures the inclusion of the most influential works. We also provide a taxonomy of the examined literature to enable scholars to have rapid and organized access when studying HAR approaches. Through this survey, we aim to inform researchers and practitioners with a holistic understanding of the current HAR landscape, its evolution, and the promising avenues for future exploration.</description><identifier>ISSN: 2504-4990</identifier><identifier>EISSN: 2504-4990</identifier><identifier>DOI: 10.3390/make6020040</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accelerometers ; Artificial intelligence ; Audio data ; Audio signals ; Comparative analysis ; daily and industrial activities ; Datasets ; Deep learning ; Human activity recognition ; human activity recognition(HAR) ; Human acts ; Human behavior ; Identification and classification ; Internet of Things ; Large language models ; Machine learning ; Machine vision ; Neural networks ; Sensors ; State-of-the-art reviews ; survey ; Taxonomy ; wearable sensors</subject><ispartof>Machine learning and knowledge extraction, 2024-06, Vol.6 (2), p.842-876</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-f26c0cd8b7b54bff66c4a6e27c46185669a73276426da17e7bab73a5f9d4eecf3</cites><orcidid>0000-0002-2333-6469 ; 0000-0003-2882-2914 ; 0000-0002-3911-7527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072380996/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072380996?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kaseris, Michail</creatorcontrib><creatorcontrib>Kostavelis, Ioannis</creatorcontrib><creatorcontrib>Malassiotis, Sotiris</creatorcontrib><title>A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition</title><title>Machine learning and knowledge extraction</title><description>Human activity recognition (HAR) remains an essential field of research with increasing real-world applications ranging from healthcare to industrial environments. As the volume of publications in this domain continues to grow, staying abreast of the most pertinent and innovative methodologies can be challenging. This survey provides a comprehensive overview of the state-of-the-art methods employed in HAR, embracing both classical machine learning techniques and their recent advancements. We investigate a plethora of approaches that leverage diverse input modalities including, but not limited to, accelerometer data, video sequences, and audio signals. Recognizing the challenge of navigating the vast and ever-growing HAR literature, we introduce a novel methodology that employs large language models to efficiently filter and pinpoint relevant academic papers. This not only reduces manual effort but also ensures the inclusion of the most influential works. We also provide a taxonomy of the examined literature to enable scholars to have rapid and organized access when studying HAR approaches. Through this survey, we aim to inform researchers and practitioners with a holistic understanding of the current HAR landscape, its evolution, and the promising avenues for future exploration.</description><subject>Accelerometers</subject><subject>Artificial intelligence</subject><subject>Audio data</subject><subject>Audio signals</subject><subject>Comparative analysis</subject><subject>daily and industrial activities</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Human activity recognition</subject><subject>human activity recognition(HAR)</subject><subject>Human acts</subject><subject>Human behavior</subject><subject>Identification and classification</subject><subject>Internet of Things</subject><subject>Large language models</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>Neural networks</subject><subject>Sensors</subject><subject>State-of-the-art reviews</subject><subject>survey</subject><subject>Taxonomy</subject><subject>wearable sensors</subject><issn>2504-4990</issn><issn>2504-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LIzEUHWQXFLdP-wcCPkr1TpJJJo-lu6tCRdiP53Anc1NTnaRmpoX-e6NdRC7cj8M5hwO3qr7XcCWEgesBn0gBB5BwUp3xBuRcGgNfPu2n1WwcNwDAtZE1yLPqfsGWadhmeqQ4hj2xP7u8pwNLkf0g2rIVYY4hrtk9TY-pH1mI7HY3YGQLN4V9mA7sN7m0jmEKKX6rvnp8Hmn2f55X_379_Lu8na8ebu6Wi9XccVNPc8-VA9e3ne4a2XmvlJOoiGsnVd02ShnUgmslueqx1qQ77LTAxpteEjkvzqu7o2-fcGO3OQyYDzZhsO9AymuLeQrumWwrjOBCYemNNLpBEsaXq4e-bnj75nVx9Nrm9LKjcbKbtMuxxLcCNBctGKMK6-rIWmMxDdGnKaMr1dMQXIrkQ8EXunC5agwvgsujwOU0jpn8R8wa7Nu_7Kd_iVffpoZz</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kaseris, Michail</creator><creator>Kostavelis, Ioannis</creator><creator>Malassiotis, Sotiris</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2333-6469</orcidid><orcidid>https://orcid.org/0000-0003-2882-2914</orcidid><orcidid>https://orcid.org/0000-0002-3911-7527</orcidid></search><sort><creationdate>20240601</creationdate><title>A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition</title><author>Kaseris, Michail ; Kostavelis, Ioannis ; Malassiotis, Sotiris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f26c0cd8b7b54bff66c4a6e27c46185669a73276426da17e7bab73a5f9d4eecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accelerometers</topic><topic>Artificial intelligence</topic><topic>Audio data</topic><topic>Audio signals</topic><topic>Comparative analysis</topic><topic>daily and industrial activities</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Human activity recognition</topic><topic>human activity recognition(HAR)</topic><topic>Human acts</topic><topic>Human behavior</topic><topic>Identification and classification</topic><topic>Internet of Things</topic><topic>Large language models</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>Neural networks</topic><topic>Sensors</topic><topic>State-of-the-art reviews</topic><topic>survey</topic><topic>Taxonomy</topic><topic>wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaseris, Michail</creatorcontrib><creatorcontrib>Kostavelis, Ioannis</creatorcontrib><creatorcontrib>Malassiotis, Sotiris</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machine learning and knowledge extraction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaseris, Michail</au><au>Kostavelis, Ioannis</au><au>Malassiotis, Sotiris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition</atitle><jtitle>Machine learning and knowledge extraction</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>6</volume><issue>2</issue><spage>842</spage><epage>876</epage><pages>842-876</pages><issn>2504-4990</issn><eissn>2504-4990</eissn><abstract>Human activity recognition (HAR) remains an essential field of research with increasing real-world applications ranging from healthcare to industrial environments. As the volume of publications in this domain continues to grow, staying abreast of the most pertinent and innovative methodologies can be challenging. This survey provides a comprehensive overview of the state-of-the-art methods employed in HAR, embracing both classical machine learning techniques and their recent advancements. We investigate a plethora of approaches that leverage diverse input modalities including, but not limited to, accelerometer data, video sequences, and audio signals. Recognizing the challenge of navigating the vast and ever-growing HAR literature, we introduce a novel methodology that employs large language models to efficiently filter and pinpoint relevant academic papers. This not only reduces manual effort but also ensures the inclusion of the most influential works. We also provide a taxonomy of the examined literature to enable scholars to have rapid and organized access when studying HAR approaches. Through this survey, we aim to inform researchers and practitioners with a holistic understanding of the current HAR landscape, its evolution, and the promising avenues for future exploration.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/make6020040</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-2333-6469</orcidid><orcidid>https://orcid.org/0000-0003-2882-2914</orcidid><orcidid>https://orcid.org/0000-0002-3911-7527</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-4990
ispartof Machine learning and knowledge extraction, 2024-06, Vol.6 (2), p.842-876
issn 2504-4990
2504-4990
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8393236a93254975ae39fa93d0d1528f
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accelerometers
Artificial intelligence
Audio data
Audio signals
Comparative analysis
daily and industrial activities
Datasets
Deep learning
Human activity recognition
human activity recognition(HAR)
Human acts
Human behavior
Identification and classification
Internet of Things
Large language models
Machine learning
Machine vision
Neural networks
Sensors
State-of-the-art reviews
survey
Taxonomy
wearable sensors
title A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Survey%20on%20Deep%20Learning%20Methods%20in%20Human%20Activity%20Recognition&rft.jtitle=Machine%20learning%20and%20knowledge%20extraction&rft.au=Kaseris,%20Michail&rft.date=2024-06-01&rft.volume=6&rft.issue=2&rft.spage=842&rft.epage=876&rft.pages=842-876&rft.issn=2504-4990&rft.eissn=2504-4990&rft_id=info:doi/10.3390/make6020040&rft_dat=%3Cgale_doaj_%3EA799626592%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-f26c0cd8b7b54bff66c4a6e27c46185669a73276426da17e7bab73a5f9d4eecf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072380996&rft_id=info:pmid/&rft_galeid=A799626592&rfr_iscdi=true