Loading…
A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition
Human activity recognition (HAR) remains an essential field of research with increasing real-world applications ranging from healthcare to industrial environments. As the volume of publications in this domain continues to grow, staying abreast of the most pertinent and innovative methodologies can b...
Saved in:
Published in: | Machine learning and knowledge extraction 2024-06, Vol.6 (2), p.842-876 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-f26c0cd8b7b54bff66c4a6e27c46185669a73276426da17e7bab73a5f9d4eecf3 |
container_end_page | 876 |
container_issue | 2 |
container_start_page | 842 |
container_title | Machine learning and knowledge extraction |
container_volume | 6 |
creator | Kaseris, Michail Kostavelis, Ioannis Malassiotis, Sotiris |
description | Human activity recognition (HAR) remains an essential field of research with increasing real-world applications ranging from healthcare to industrial environments. As the volume of publications in this domain continues to grow, staying abreast of the most pertinent and innovative methodologies can be challenging. This survey provides a comprehensive overview of the state-of-the-art methods employed in HAR, embracing both classical machine learning techniques and their recent advancements. We investigate a plethora of approaches that leverage diverse input modalities including, but not limited to, accelerometer data, video sequences, and audio signals. Recognizing the challenge of navigating the vast and ever-growing HAR literature, we introduce a novel methodology that employs large language models to efficiently filter and pinpoint relevant academic papers. This not only reduces manual effort but also ensures the inclusion of the most influential works. We also provide a taxonomy of the examined literature to enable scholars to have rapid and organized access when studying HAR approaches. Through this survey, we aim to inform researchers and practitioners with a holistic understanding of the current HAR landscape, its evolution, and the promising avenues for future exploration. |
doi_str_mv | 10.3390/make6020040 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8393236a93254975ae39fa93d0d1528f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799626592</galeid><doaj_id>oai_doaj_org_article_8393236a93254975ae39fa93d0d1528f</doaj_id><sourcerecordid>A799626592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f26c0cd8b7b54bff66c4a6e27c46185669a73276426da17e7bab73a5f9d4eecf3</originalsourceid><addsrcrecordid>eNpNUV1LIzEUHWQXFLdP-wcCPkr1TpJJJo-lu6tCRdiP53Anc1NTnaRmpoX-e6NdRC7cj8M5hwO3qr7XcCWEgesBn0gBB5BwUp3xBuRcGgNfPu2n1WwcNwDAtZE1yLPqfsGWadhmeqQ4hj2xP7u8pwNLkf0g2rIVYY4hrtk9TY-pH1mI7HY3YGQLN4V9mA7sN7m0jmEKKX6rvnp8Hmn2f55X_379_Lu8na8ebu6Wi9XccVNPc8-VA9e3ne4a2XmvlJOoiGsnVd02ShnUgmslueqx1qQ77LTAxpteEjkvzqu7o2-fcGO3OQyYDzZhsO9AymuLeQrumWwrjOBCYemNNLpBEsaXq4e-bnj75nVx9Nrm9LKjcbKbtMuxxLcCNBctGKMK6-rIWmMxDdGnKaMr1dMQXIrkQ8EXunC5agwvgsujwOU0jpn8R8wa7Nu_7Kd_iVffpoZz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072380996</pqid></control><display><type>article</type><title>A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Kaseris, Michail ; Kostavelis, Ioannis ; Malassiotis, Sotiris</creator><creatorcontrib>Kaseris, Michail ; Kostavelis, Ioannis ; Malassiotis, Sotiris</creatorcontrib><description>Human activity recognition (HAR) remains an essential field of research with increasing real-world applications ranging from healthcare to industrial environments. As the volume of publications in this domain continues to grow, staying abreast of the most pertinent and innovative methodologies can be challenging. This survey provides a comprehensive overview of the state-of-the-art methods employed in HAR, embracing both classical machine learning techniques and their recent advancements. We investigate a plethora of approaches that leverage diverse input modalities including, but not limited to, accelerometer data, video sequences, and audio signals. Recognizing the challenge of navigating the vast and ever-growing HAR literature, we introduce a novel methodology that employs large language models to efficiently filter and pinpoint relevant academic papers. This not only reduces manual effort but also ensures the inclusion of the most influential works. We also provide a taxonomy of the examined literature to enable scholars to have rapid and organized access when studying HAR approaches. Through this survey, we aim to inform researchers and practitioners with a holistic understanding of the current HAR landscape, its evolution, and the promising avenues for future exploration.</description><identifier>ISSN: 2504-4990</identifier><identifier>EISSN: 2504-4990</identifier><identifier>DOI: 10.3390/make6020040</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accelerometers ; Artificial intelligence ; Audio data ; Audio signals ; Comparative analysis ; daily and industrial activities ; Datasets ; Deep learning ; Human activity recognition ; human activity recognition(HAR) ; Human acts ; Human behavior ; Identification and classification ; Internet of Things ; Large language models ; Machine learning ; Machine vision ; Neural networks ; Sensors ; State-of-the-art reviews ; survey ; Taxonomy ; wearable sensors</subject><ispartof>Machine learning and knowledge extraction, 2024-06, Vol.6 (2), p.842-876</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-f26c0cd8b7b54bff66c4a6e27c46185669a73276426da17e7bab73a5f9d4eecf3</cites><orcidid>0000-0002-2333-6469 ; 0000-0003-2882-2914 ; 0000-0002-3911-7527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072380996/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072380996?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kaseris, Michail</creatorcontrib><creatorcontrib>Kostavelis, Ioannis</creatorcontrib><creatorcontrib>Malassiotis, Sotiris</creatorcontrib><title>A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition</title><title>Machine learning and knowledge extraction</title><description>Human activity recognition (HAR) remains an essential field of research with increasing real-world applications ranging from healthcare to industrial environments. As the volume of publications in this domain continues to grow, staying abreast of the most pertinent and innovative methodologies can be challenging. This survey provides a comprehensive overview of the state-of-the-art methods employed in HAR, embracing both classical machine learning techniques and their recent advancements. We investigate a plethora of approaches that leverage diverse input modalities including, but not limited to, accelerometer data, video sequences, and audio signals. Recognizing the challenge of navigating the vast and ever-growing HAR literature, we introduce a novel methodology that employs large language models to efficiently filter and pinpoint relevant academic papers. This not only reduces manual effort but also ensures the inclusion of the most influential works. We also provide a taxonomy of the examined literature to enable scholars to have rapid and organized access when studying HAR approaches. Through this survey, we aim to inform researchers and practitioners with a holistic understanding of the current HAR landscape, its evolution, and the promising avenues for future exploration.</description><subject>Accelerometers</subject><subject>Artificial intelligence</subject><subject>Audio data</subject><subject>Audio signals</subject><subject>Comparative analysis</subject><subject>daily and industrial activities</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Human activity recognition</subject><subject>human activity recognition(HAR)</subject><subject>Human acts</subject><subject>Human behavior</subject><subject>Identification and classification</subject><subject>Internet of Things</subject><subject>Large language models</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>Neural networks</subject><subject>Sensors</subject><subject>State-of-the-art reviews</subject><subject>survey</subject><subject>Taxonomy</subject><subject>wearable sensors</subject><issn>2504-4990</issn><issn>2504-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LIzEUHWQXFLdP-wcCPkr1TpJJJo-lu6tCRdiP53Anc1NTnaRmpoX-e6NdRC7cj8M5hwO3qr7XcCWEgesBn0gBB5BwUp3xBuRcGgNfPu2n1WwcNwDAtZE1yLPqfsGWadhmeqQ4hj2xP7u8pwNLkf0g2rIVYY4hrtk9TY-pH1mI7HY3YGQLN4V9mA7sN7m0jmEKKX6rvnp8Hmn2f55X_379_Lu8na8ebu6Wi9XccVNPc8-VA9e3ne4a2XmvlJOoiGsnVd02ShnUgmslueqx1qQ77LTAxpteEjkvzqu7o2-fcGO3OQyYDzZhsO9AymuLeQrumWwrjOBCYemNNLpBEsaXq4e-bnj75nVx9Nrm9LKjcbKbtMuxxLcCNBctGKMK6-rIWmMxDdGnKaMr1dMQXIrkQ8EXunC5agwvgsujwOU0jpn8R8wa7Nu_7Kd_iVffpoZz</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kaseris, Michail</creator><creator>Kostavelis, Ioannis</creator><creator>Malassiotis, Sotiris</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2333-6469</orcidid><orcidid>https://orcid.org/0000-0003-2882-2914</orcidid><orcidid>https://orcid.org/0000-0002-3911-7527</orcidid></search><sort><creationdate>20240601</creationdate><title>A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition</title><author>Kaseris, Michail ; Kostavelis, Ioannis ; Malassiotis, Sotiris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f26c0cd8b7b54bff66c4a6e27c46185669a73276426da17e7bab73a5f9d4eecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accelerometers</topic><topic>Artificial intelligence</topic><topic>Audio data</topic><topic>Audio signals</topic><topic>Comparative analysis</topic><topic>daily and industrial activities</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Human activity recognition</topic><topic>human activity recognition(HAR)</topic><topic>Human acts</topic><topic>Human behavior</topic><topic>Identification and classification</topic><topic>Internet of Things</topic><topic>Large language models</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>Neural networks</topic><topic>Sensors</topic><topic>State-of-the-art reviews</topic><topic>survey</topic><topic>Taxonomy</topic><topic>wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaseris, Michail</creatorcontrib><creatorcontrib>Kostavelis, Ioannis</creatorcontrib><creatorcontrib>Malassiotis, Sotiris</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machine learning and knowledge extraction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaseris, Michail</au><au>Kostavelis, Ioannis</au><au>Malassiotis, Sotiris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition</atitle><jtitle>Machine learning and knowledge extraction</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>6</volume><issue>2</issue><spage>842</spage><epage>876</epage><pages>842-876</pages><issn>2504-4990</issn><eissn>2504-4990</eissn><abstract>Human activity recognition (HAR) remains an essential field of research with increasing real-world applications ranging from healthcare to industrial environments. As the volume of publications in this domain continues to grow, staying abreast of the most pertinent and innovative methodologies can be challenging. This survey provides a comprehensive overview of the state-of-the-art methods employed in HAR, embracing both classical machine learning techniques and their recent advancements. We investigate a plethora of approaches that leverage diverse input modalities including, but not limited to, accelerometer data, video sequences, and audio signals. Recognizing the challenge of navigating the vast and ever-growing HAR literature, we introduce a novel methodology that employs large language models to efficiently filter and pinpoint relevant academic papers. This not only reduces manual effort but also ensures the inclusion of the most influential works. We also provide a taxonomy of the examined literature to enable scholars to have rapid and organized access when studying HAR approaches. Through this survey, we aim to inform researchers and practitioners with a holistic understanding of the current HAR landscape, its evolution, and the promising avenues for future exploration.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/make6020040</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-2333-6469</orcidid><orcidid>https://orcid.org/0000-0003-2882-2914</orcidid><orcidid>https://orcid.org/0000-0002-3911-7527</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-4990 |
ispartof | Machine learning and knowledge extraction, 2024-06, Vol.6 (2), p.842-876 |
issn | 2504-4990 2504-4990 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8393236a93254975ae39fa93d0d1528f |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accelerometers Artificial intelligence Audio data Audio signals Comparative analysis daily and industrial activities Datasets Deep learning Human activity recognition human activity recognition(HAR) Human acts Human behavior Identification and classification Internet of Things Large language models Machine learning Machine vision Neural networks Sensors State-of-the-art reviews survey Taxonomy wearable sensors |
title | A Comprehensive Survey on Deep Learning Methods in Human Activity Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Survey%20on%20Deep%20Learning%20Methods%20in%20Human%20Activity%20Recognition&rft.jtitle=Machine%20learning%20and%20knowledge%20extraction&rft.au=Kaseris,%20Michail&rft.date=2024-06-01&rft.volume=6&rft.issue=2&rft.spage=842&rft.epage=876&rft.pages=842-876&rft.issn=2504-4990&rft.eissn=2504-4990&rft_id=info:doi/10.3390/make6020040&rft_dat=%3Cgale_doaj_%3EA799626592%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-f26c0cd8b7b54bff66c4a6e27c46185669a73276426da17e7bab73a5f9d4eecf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072380996&rft_id=info:pmid/&rft_galeid=A799626592&rfr_iscdi=true |