Loading…
A Parallel Algorithm for Community Detection in Social Networks, Based on Path Analysis and Threaded Binary Trees
Several synchronous applications are based on the graph-structured data; among them, a very important application of this kind is community detection. Since the number and size of the networks modeled by graphs grow larger and larger, some level of parallelism needs to be used, to reduce the computa...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.20499-20519 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Several synchronous applications are based on the graph-structured data; among them, a very important application of this kind is community detection. Since the number and size of the networks modeled by graphs grow larger and larger, some level of parallelism needs to be used, to reduce the computational costs of such massive applications. Social networking sites allow users to manually categorize their friends into social circles (referred to as lists on Facebook and Twitter), while users, based on their interests, place themselves into groups of interest. However, the community detection and is a very effortful procedure, and in addition, these communities need to be updated very often, resulting in more effort. In this paper, we combine parallel processing techniques with a typical data structure like threaded binary trees to detect communities in an efficient manner. Our strategy is implemented over weighted networks with irregular topologies and it is based on a stepwise path detection strategy, where each step finds a link that increases the overall strength of the path being detected. To verify the functionality and parallelism benefits of our scheme, we perform experiments on five real-world data sets: Facebook ® , Twitter ® , Google+ ® , Pokec, and LiveJournal. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2897783 |