Loading…

Waveguide effective plasmonics with structure dispersion

Plasmonic phenomena on the surface between metal and dielectric have received extensive attention, and have boosted a series of exciting techniques. Plasmonics describes the interaction between light and electronics and shows great potential in nanophotonics, optoelectronic devices, quantum physics,...

Full description

Saved in:
Bibliographic Details
Published in:Nanophotonics (Berlin, Germany) Germany), 2022-04, Vol.11 (9), p.1659-1676
Main Authors: Qin, Xu, Sun, Wangyu, Zhou, Ziheng, Fu, Pengyu, Li, Hao, Li, Yue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plasmonic phenomena on the surface between metal and dielectric have received extensive attention, and have boosted a series of exciting techniques. Plasmonics describes the interaction between light and electronics and shows great potential in nanophotonics, optoelectronic devices, quantum physics, and surface-enhanced spectroscopy, etc. However, plasmonic phenomena are always suffering from the inherent loss issue of plasmonic materials at optical frequency, which has restricted further applications of plasmonics. In this review, we focus on the technique of waveguide effective plasmonics, which is a feasible low-loss realization of plasmonic metamaterials in lower frequency based on the structural dispersion. This review provides the underlying physics of the waveguide effective plasmonics and its applications varying from classical plasmonic concepts to novel effective plasmonic devices. Finally, we make a brief discussion on the direction of future researches and a prospect of the potential applications.
ISSN:2192-8614
2192-8606
2192-8614
DOI:10.1515/nanoph-2021-0613