Loading…
Simulation of B2C e-commerce distribution in Antwerp using cargo bikes and delivery points
Purpose The growth of e-commerce is accompanied by an increasing distribution of parcels in cities resulting in externalities like traffic congestion or emissions. As a consequence, different delivery concepts like bike deliveries or delivery points have been suggested. Naturally, companies will onl...
Saved in:
Published in: | European transport research review 2018-03, Vol.10 (1), p.1-13, Article 2 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
The growth of e-commerce is accompanied by an increasing distribution of parcels in cities resulting in externalities like traffic congestion or emissions. As a consequence, different delivery concepts like bike deliveries or delivery points have been suggested. Naturally, companies will only accept these changes, if they do not result in higher costs. However, it is difficult to predict the impact of a certain delivery concept in a certain city. This leads to the research question, how different delivery scenarios for a certain area can be assessed and compared, especially if some of them have not been implemented.
Methods
Using a case study, we demonstrate how the effects of different delivery concepts can be quantified with the help of a simulation study. We take care to accurately model the delivery processes and utilise a real-world dataset and realistic cost values. On the basis of these inputs, we simulate and analyse the current state-of-the-practice in the distribution of e-commerce goods in Antwerp and compare it to possible `what-if’ scenarios.
Results
The results highlight that the investigated delivery concepts can benefit either the companies or the quality of life in the city. Operational costs of companies can be reduced by stimulating customer self-pick-up, while externalities decrease with the implementation of a cargo bike distribution system.
Conclusions
We demonstrate that both operational and external costs can be minimised, if involved stakeholders from industry and the public look for sustainable delivery solution jointly. |
---|---|
ISSN: | 1867-0717 1866-8887 |
DOI: | 10.1007/s12544-017-0272-6 |