Loading…
Experimental and numerical study of globe valve housing
Complex structure experimental analysis has always been a huge challenge for researchers. Conventional experimental methods (e.g., strain gauges) give only limited data sets regarding measurement on critical areas with high geometrical discontinuities. A 3D Digital Image Correlation method is an opt...
Saved in:
Published in: | Hemijska industrija 2017-01, Vol.71 (3), p.251-257 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Complex structure experimental analysis has always been a huge challenge for researchers. Conventional experimental methods (e.g., strain gauges) give only limited data sets regarding measurement on critical areas with high geometrical discontinuities. A 3D Digital Image Correlation method is an optical method that overcomes the limitations of conventional methods and enables full-field displacement and strain measurement of geometrically complex structures. System Aramis, based on Digital Image Correlation method, is used for experimental analysis and numerical model verification in this paper. Investigated complex structure is sphere/cylinder junction on globe valve housing subjected to axial loading. The highest experimentally measured von Mises strain values around 0.15% are recorded on cylinder/sphere intersection. Von Mises strain values on cylindrical and spherical part are several times smaller than on intersection itself. It is important to emphasize that, to the authors? best knowledge, this is the first paper showing experimental results of 3D full and strain field of geometrically complex structure (sphere/cylinder intersection) on the intersection itself on pressure equipment. It is proven that 3D Digital Image Correlation method is fast and versatile method for recording strain during loading of complex structures. |
---|---|
ISSN: | 0367-598X 2217-7426 |
DOI: | 10.2298/HEMIND160516035M |