Loading…

Federated Learning for Human Activity Recognition: Overview, Advances, and Challenges

Human Activity Recognition (HAR) has seen remarkable advances in recent years, driven by the widespread use of wearable devices and the increasing demand for personalized healthcare and activity tracking. Federated Learning (FL) is a promising paradigm for HAR that enables the collaborative training...

Full description

Saved in:
Bibliographic Details
Published in:IEEE open journal of the Communications Society 2024, Vol.5, p.7341-7367
Main Authors: Aouedi, Ons, Sacco, Alessio, Khan, Latif U., Nguyen, Dinh C., Guizani, Mohsen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human Activity Recognition (HAR) has seen remarkable advances in recent years, driven by the widespread use of wearable devices and the increasing demand for personalized healthcare and activity tracking. Federated Learning (FL) is a promising paradigm for HAR that enables the collaborative training of machine learning models on decentralized devices while preserving data privacy. It improves not only data privacy but also training efficiency as it utilizes the computing power and data of potentially millions of smart devices for parallel training. In addition, it helps end-user devices avoid sending users' private data to the cloud, eliminates the need for a network connection, and saves the latency of back-and-forth communication. FL also offers significant advantages for communication by reducing the amount of data transmitted over the network, alleviating network congestion and reducing communication costs. By distributing the training process across devices, FL minimizes the need for centralized data storage and processing, leading to more scalable and resilient systems. This paper provides a comprehensive survey of the integration of FL into HAR applications. Unlike existing reviews, this paper uniquely focuses on the intersection of FL and HAR, providing an in-depth analysis of recent advances and their practical implications. We explore key advances in FL-based HAR methodologies, including model architectures, optimization techniques, and different applications. Furthermore, we highlight the major challenges and future research questions in this domain, such as model personalization and robustness, privacy concerns, concept drift, and the limited capacity of edge devices.
ISSN:2644-125X
2644-125X
DOI:10.1109/OJCOMS.2024.3484228