Loading…
A Traffic Assignment Model Based on Link Densities
A new model is presented that determines the traffic equilibrium on congested networks using link densities as well as costs in a manner consistent with the fundamental traffic equation. The solution so derived satisfies Wardrop’s first principle. This density-based approach recognizes traffic flow...
Saved in:
Published in: | Journal of advanced transportation 2019-01, Vol.2019 (2019), p.1-20 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new model is presented that determines the traffic equilibrium on congested networks using link densities as well as costs in a manner consistent with the fundamental traffic equation. The solution so derived satisfies Wardrop’s first principle. This density-based approach recognizes traffic flow reductions that may occur when network traffic congestion is high; also, it estimates queue lengths (i.e., the number of vehicles on saturated links), and it explicitly takes into account the maximum flow a link can handle, which is defined by the fundamental traffic equation. The model is validated using traffic microsimulations and implemented on a typical Nguyen-Dupuis network to compare it with a flow-based approach. System optimal assignment model based on link densities is also presented. |
---|---|
ISSN: | 0197-6729 2042-3195 |
DOI: | 10.1155/2019/5282879 |