Loading…

Engineering human stellate cells for beta cell replacement therapy promotes in vivo recruitment of regulatory T cells

Type 1 diabetes (T1D) is an autoimmune disease characterized by destruction of pancreatic β cells. One of the promising therapeutic approaches in T1D is the transplantation of islets; however, it has serious limitations. To address these limitations, immunotherapeutic strategies have focused on rest...

Full description

Saved in:
Bibliographic Details
Published in:Materials today bio 2019-03, Vol.2, p.100006-100006, Article 100006
Main Authors: Oran, D C, Lokumcu, T, Inceoglu, Y, Akolpoglu, M B, Albayrak, O, Bal, T, Kurtoglu, M, Erkan, M, Can, F, Bagci-Onder, T, Kizilel, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c471t-55274c417b07b28923ebbdb34520857ea5b06cab38a90d70bacca2331ca100a13
cites cdi_FETCH-LOGICAL-c471t-55274c417b07b28923ebbdb34520857ea5b06cab38a90d70bacca2331ca100a13
container_end_page 100006
container_issue
container_start_page 100006
container_title Materials today bio
container_volume 2
creator Oran, D C
Lokumcu, T
Inceoglu, Y
Akolpoglu, M B
Albayrak, O
Bal, T
Kurtoglu, M
Erkan, M
Can, F
Bagci-Onder, T
Kizilel, S
description Type 1 diabetes (T1D) is an autoimmune disease characterized by destruction of pancreatic β cells. One of the promising therapeutic approaches in T1D is the transplantation of islets; however, it has serious limitations. To address these limitations, immunotherapeutic strategies have focused on restoring immunologic tolerance, preventing transplanted cell destruction by patients' own immune system. Macrophage-derived chemokines such as chemokine-ligand-22 (CCL22) can be utilized for regulatory T cell (Treg) recruitment and graft tolerance. Stellate cells (SCs) have various immunomodulatory functions: recruitment of Tregs and induction of T-cell apoptosis. Here, we designed a unique immune-privileged microenvironment around implantable islets through overexpression of CCL22 proteins by SCs. We prepared pseudoislets with insulin-secreting mouse insulinoma-6 (MIN6) cells and human SCs as a model to mimic naive islet morphology. Our results demonstrated that transduced SCs can secrete CCL22 and recruit Tregs toward ​the implantation site . This study is promising to provide a fundamental understanding of SC-islet interaction and ligand synthesis and transport from SCs at the graft site for ensuring local immune tolerance. Our results also establish a new paradigm for creating tolerable grafts for other chronic diseases such as diabetes, anemia, and central nervous system (CNS) diseases, and advance the science of graft tolerance.
doi_str_mv 10.1016/j.mtbio.2019.100006
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_841beb1ea83445e5846c5fcd0f74fe54</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_841beb1ea83445e5846c5fcd0f74fe54</doaj_id><sourcerecordid>2376221121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-55274c417b07b28923ebbdb34520857ea5b06cab38a90d70bacca2331ca100a13</originalsourceid><addsrcrecordid>eNpVkU1r3DAQhk1paUKaX1AoOvayW31a9qVQQtIGArkkZzHSjr1abMuV5IX999XupiHRZT4082g0b1V9ZXTNKKt_7NZjtj6sOWVtyZRTf6guuWrpqrjy4xv_orpOaVcquG4lpe3n6kJwplomxWW13E69nxCjn3qyXUaYSMo4DJCRuGIT6UIkFjOcQhJxHsDhiFMmeYsR5gOZYxhDxkT8RPZ-H0qRi4vPp6LQlbBfCjDEA3k6Q79UnzoYEl6_2Kvq-e726ebP6uHx9_3Nr4eVk5rllVJcSyeZtlRb3rRcoLUbK6TitFEaQVlaO7CigZZuNLXgHHAhmIOyEmDiqro_czcBdmaOfoR4MAG8OSVC7A3E7N2AppHMomUIjZBSoWpk7VTnNrTTskMlC-vnmTUvdsSNK5-LMLyDvr-Z_Nb0YW80rZnSqgC-vwBi-Ltgymb06bgOmDAsyXCha84Z48e5xbnUxZBSxO71GUbNUX-zMyf9zVF_c9a_dH17O-Frz3-1xT8eHbAU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376221121</pqid></control><display><type>article</type><title>Engineering human stellate cells for beta cell replacement therapy promotes in vivo recruitment of regulatory T cells</title><source>Open Access: PubMed Central</source><source>ScienceDirect (Online service)</source><creator>Oran, D C ; Lokumcu, T ; Inceoglu, Y ; Akolpoglu, M B ; Albayrak, O ; Bal, T ; Kurtoglu, M ; Erkan, M ; Can, F ; Bagci-Onder, T ; Kizilel, S</creator><creatorcontrib>Oran, D C ; Lokumcu, T ; Inceoglu, Y ; Akolpoglu, M B ; Albayrak, O ; Bal, T ; Kurtoglu, M ; Erkan, M ; Can, F ; Bagci-Onder, T ; Kizilel, S</creatorcontrib><description>Type 1 diabetes (T1D) is an autoimmune disease characterized by destruction of pancreatic β cells. One of the promising therapeutic approaches in T1D is the transplantation of islets; however, it has serious limitations. To address these limitations, immunotherapeutic strategies have focused on restoring immunologic tolerance, preventing transplanted cell destruction by patients' own immune system. Macrophage-derived chemokines such as chemokine-ligand-22 (CCL22) can be utilized for regulatory T cell (Treg) recruitment and graft tolerance. Stellate cells (SCs) have various immunomodulatory functions: recruitment of Tregs and induction of T-cell apoptosis. Here, we designed a unique immune-privileged microenvironment around implantable islets through overexpression of CCL22 proteins by SCs. We prepared pseudoislets with insulin-secreting mouse insulinoma-6 (MIN6) cells and human SCs as a model to mimic naive islet morphology. Our results demonstrated that transduced SCs can secrete CCL22 and recruit Tregs toward ​the implantation site . This study is promising to provide a fundamental understanding of SC-islet interaction and ligand synthesis and transport from SCs at the graft site for ensuring local immune tolerance. Our results also establish a new paradigm for creating tolerable grafts for other chronic diseases such as diabetes, anemia, and central nervous system (CNS) diseases, and advance the science of graft tolerance.</description><identifier>ISSN: 2590-0064</identifier><identifier>EISSN: 2590-0064</identifier><identifier>DOI: 10.1016/j.mtbio.2019.100006</identifier><identifier>PMID: 32159143</identifier><language>eng</language><publisher>England: Elsevier</publisher><subject>Full-Length</subject><ispartof>Materials today bio, 2019-03, Vol.2, p.100006-100006, Article 100006</ispartof><rights>2019 The Authors.</rights><rights>2019 The Authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-55274c417b07b28923ebbdb34520857ea5b06cab38a90d70bacca2331ca100a13</citedby><cites>FETCH-LOGICAL-c471t-55274c417b07b28923ebbdb34520857ea5b06cab38a90d70bacca2331ca100a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061575/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061575/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32159143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oran, D C</creatorcontrib><creatorcontrib>Lokumcu, T</creatorcontrib><creatorcontrib>Inceoglu, Y</creatorcontrib><creatorcontrib>Akolpoglu, M B</creatorcontrib><creatorcontrib>Albayrak, O</creatorcontrib><creatorcontrib>Bal, T</creatorcontrib><creatorcontrib>Kurtoglu, M</creatorcontrib><creatorcontrib>Erkan, M</creatorcontrib><creatorcontrib>Can, F</creatorcontrib><creatorcontrib>Bagci-Onder, T</creatorcontrib><creatorcontrib>Kizilel, S</creatorcontrib><title>Engineering human stellate cells for beta cell replacement therapy promotes in vivo recruitment of regulatory T cells</title><title>Materials today bio</title><addtitle>Mater Today Bio</addtitle><description>Type 1 diabetes (T1D) is an autoimmune disease characterized by destruction of pancreatic β cells. One of the promising therapeutic approaches in T1D is the transplantation of islets; however, it has serious limitations. To address these limitations, immunotherapeutic strategies have focused on restoring immunologic tolerance, preventing transplanted cell destruction by patients' own immune system. Macrophage-derived chemokines such as chemokine-ligand-22 (CCL22) can be utilized for regulatory T cell (Treg) recruitment and graft tolerance. Stellate cells (SCs) have various immunomodulatory functions: recruitment of Tregs and induction of T-cell apoptosis. Here, we designed a unique immune-privileged microenvironment around implantable islets through overexpression of CCL22 proteins by SCs. We prepared pseudoislets with insulin-secreting mouse insulinoma-6 (MIN6) cells and human SCs as a model to mimic naive islet morphology. Our results demonstrated that transduced SCs can secrete CCL22 and recruit Tregs toward ​the implantation site . This study is promising to provide a fundamental understanding of SC-islet interaction and ligand synthesis and transport from SCs at the graft site for ensuring local immune tolerance. Our results also establish a new paradigm for creating tolerable grafts for other chronic diseases such as diabetes, anemia, and central nervous system (CNS) diseases, and advance the science of graft tolerance.</description><subject>Full-Length</subject><issn>2590-0064</issn><issn>2590-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1r3DAQhk1paUKaX1AoOvayW31a9qVQQtIGArkkZzHSjr1abMuV5IX999XupiHRZT4082g0b1V9ZXTNKKt_7NZjtj6sOWVtyZRTf6guuWrpqrjy4xv_orpOaVcquG4lpe3n6kJwplomxWW13E69nxCjn3qyXUaYSMo4DJCRuGIT6UIkFjOcQhJxHsDhiFMmeYsR5gOZYxhDxkT8RPZ-H0qRi4vPp6LQlbBfCjDEA3k6Q79UnzoYEl6_2Kvq-e726ebP6uHx9_3Nr4eVk5rllVJcSyeZtlRb3rRcoLUbK6TitFEaQVlaO7CigZZuNLXgHHAhmIOyEmDiqro_czcBdmaOfoR4MAG8OSVC7A3E7N2AppHMomUIjZBSoWpk7VTnNrTTskMlC-vnmTUvdsSNK5-LMLyDvr-Z_Nb0YW80rZnSqgC-vwBi-Ltgymb06bgOmDAsyXCha84Z48e5xbnUxZBSxO71GUbNUX-zMyf9zVF_c9a_dH17O-Frz3-1xT8eHbAU</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Oran, D C</creator><creator>Lokumcu, T</creator><creator>Inceoglu, Y</creator><creator>Akolpoglu, M B</creator><creator>Albayrak, O</creator><creator>Bal, T</creator><creator>Kurtoglu, M</creator><creator>Erkan, M</creator><creator>Can, F</creator><creator>Bagci-Onder, T</creator><creator>Kizilel, S</creator><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190301</creationdate><title>Engineering human stellate cells for beta cell replacement therapy promotes in vivo recruitment of regulatory T cells</title><author>Oran, D C ; Lokumcu, T ; Inceoglu, Y ; Akolpoglu, M B ; Albayrak, O ; Bal, T ; Kurtoglu, M ; Erkan, M ; Can, F ; Bagci-Onder, T ; Kizilel, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-55274c417b07b28923ebbdb34520857ea5b06cab38a90d70bacca2331ca100a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Full-Length</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oran, D C</creatorcontrib><creatorcontrib>Lokumcu, T</creatorcontrib><creatorcontrib>Inceoglu, Y</creatorcontrib><creatorcontrib>Akolpoglu, M B</creatorcontrib><creatorcontrib>Albayrak, O</creatorcontrib><creatorcontrib>Bal, T</creatorcontrib><creatorcontrib>Kurtoglu, M</creatorcontrib><creatorcontrib>Erkan, M</creatorcontrib><creatorcontrib>Can, F</creatorcontrib><creatorcontrib>Bagci-Onder, T</creatorcontrib><creatorcontrib>Kizilel, S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials today bio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oran, D C</au><au>Lokumcu, T</au><au>Inceoglu, Y</au><au>Akolpoglu, M B</au><au>Albayrak, O</au><au>Bal, T</au><au>Kurtoglu, M</au><au>Erkan, M</au><au>Can, F</au><au>Bagci-Onder, T</au><au>Kizilel, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering human stellate cells for beta cell replacement therapy promotes in vivo recruitment of regulatory T cells</atitle><jtitle>Materials today bio</jtitle><addtitle>Mater Today Bio</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>2</volume><spage>100006</spage><epage>100006</epage><pages>100006-100006</pages><artnum>100006</artnum><issn>2590-0064</issn><eissn>2590-0064</eissn><abstract>Type 1 diabetes (T1D) is an autoimmune disease characterized by destruction of pancreatic β cells. One of the promising therapeutic approaches in T1D is the transplantation of islets; however, it has serious limitations. To address these limitations, immunotherapeutic strategies have focused on restoring immunologic tolerance, preventing transplanted cell destruction by patients' own immune system. Macrophage-derived chemokines such as chemokine-ligand-22 (CCL22) can be utilized for regulatory T cell (Treg) recruitment and graft tolerance. Stellate cells (SCs) have various immunomodulatory functions: recruitment of Tregs and induction of T-cell apoptosis. Here, we designed a unique immune-privileged microenvironment around implantable islets through overexpression of CCL22 proteins by SCs. We prepared pseudoislets with insulin-secreting mouse insulinoma-6 (MIN6) cells and human SCs as a model to mimic naive islet morphology. Our results demonstrated that transduced SCs can secrete CCL22 and recruit Tregs toward ​the implantation site . This study is promising to provide a fundamental understanding of SC-islet interaction and ligand synthesis and transport from SCs at the graft site for ensuring local immune tolerance. Our results also establish a new paradigm for creating tolerable grafts for other chronic diseases such as diabetes, anemia, and central nervous system (CNS) diseases, and advance the science of graft tolerance.</abstract><cop>England</cop><pub>Elsevier</pub><pmid>32159143</pmid><doi>10.1016/j.mtbio.2019.100006</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2590-0064
ispartof Materials today bio, 2019-03, Vol.2, p.100006-100006, Article 100006
issn 2590-0064
2590-0064
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_841beb1ea83445e5846c5fcd0f74fe54
source Open Access: PubMed Central; ScienceDirect (Online service)
subjects Full-Length
title Engineering human stellate cells for beta cell replacement therapy promotes in vivo recruitment of regulatory T cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20human%20stellate%20cells%20for%20beta%20cell%20replacement%20therapy%20promotes%20in%20vivo%20recruitment%20of%20regulatory%20T%20cells&rft.jtitle=Materials%20today%20bio&rft.au=Oran,%20D%20C&rft.date=2019-03-01&rft.volume=2&rft.spage=100006&rft.epage=100006&rft.pages=100006-100006&rft.artnum=100006&rft.issn=2590-0064&rft.eissn=2590-0064&rft_id=info:doi/10.1016/j.mtbio.2019.100006&rft_dat=%3Cproquest_doaj_%3E2376221121%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-55274c417b07b28923ebbdb34520857ea5b06cab38a90d70bacca2331ca100a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376221121&rft_id=info:pmid/32159143&rfr_iscdi=true