Loading…
A Probabilistic Version of Eneström–Kakeya Theorem for Certain Random Polynomials
This paper presents a comprehensive exploration of a probabilistic adaptation of the Eneström–Kakeya theorem, applied to random polynomials featuring various coefficient distributions. Unlike the deterministic rendition of the theorem, our study dispenses with the necessity of any specific coefficie...
Saved in:
Published in: | Mathematics (Basel) 2023-10, Vol.11 (19), p.4061 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-2294ac44f5bf13475c599af5be54a10e8b91466f915266c47b7d01cead2e3bd83 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-2294ac44f5bf13475c599af5be54a10e8b91466f915266c47b7d01cead2e3bd83 |
container_end_page | |
container_issue | 19 |
container_start_page | 4061 |
container_title | Mathematics (Basel) |
container_volume | 11 |
creator | Sheikh, Sajad A. Mir, Mohammad Ibrahim Dar, Javid Gani Almanjahie, Ibrahim M. Alshahrani, Fatimah |
description | This paper presents a comprehensive exploration of a probabilistic adaptation of the Eneström–Kakeya theorem, applied to random polynomials featuring various coefficient distributions. Unlike the deterministic rendition of the theorem, our study dispenses with the necessity of any specific coefficient order. Instead, we consider coefficients drawn from a spectrum of sets with diverse probability distributions, encompassing finite, countable, and uncountable sets. Furthermore, we provide a result concerning the probability of failure of Schur stability for a random polynomial with coefficients distributed independently and identically as standard normal variates. We also provide simulations to corroborate our results. |
doi_str_mv | 10.3390/math11194061 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_841d9435f12d4b33a7db9e24756108f5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772098465</galeid><doaj_id>oai_doaj_org_article_841d9435f12d4b33a7db9e24756108f5</doaj_id><sourcerecordid>A772098465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-2294ac44f5bf13475c599af5be54a10e8b91466f915266c47b7d01cead2e3bd83</originalsourceid><addsrcrecordid>eNpNkUtOAzEMhkcIJCpgxwEisaWQ1ySTZVWVh0ACocI28uTRpnQmJTMsuuMO3IULcBNOQkoRIl44duwvv-WiOCb4jDGFzxvo54QQxbEgO8WAUiqHMj_s_rvvF0ddt8D5KMIqrgbFdITuU6yhDsvQ9cGgJ5e6EFsUPZq0ruvT50fz9fZ-A89uDWg6dzG5BvmY0NilHkKLHqC1sUH3cbluYxNg2R0Wez47d_TrD4rHi8l0fDW8vbu8Ho9uhyaL7IeUKg6Gc1_WnjAuS1MqBTlyJQeCXVUrwoXwipRUCMNlLS0mxoGljtW2YgfF9ZZrIyz0KoUG0lpHCPonEdNMQ8pDLZ2uOLGKs9ITannNGEhbK0fzp4LgypeZdbJlrVJ8ec2D60V8TW2Wr2klRckE5SJXnW2rZpChofWxT2CyWdcEE1vnQ86PpKRYVVxssKfbBpNi1yXn_2QSrDd70__3xr4Bd7GLCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876536246</pqid></control><display><type>article</type><title>A Probabilistic Version of Eneström–Kakeya Theorem for Certain Random Polynomials</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Sheikh, Sajad A. ; Mir, Mohammad Ibrahim ; Dar, Javid Gani ; Almanjahie, Ibrahim M. ; Alshahrani, Fatimah</creator><creatorcontrib>Sheikh, Sajad A. ; Mir, Mohammad Ibrahim ; Dar, Javid Gani ; Almanjahie, Ibrahim M. ; Alshahrani, Fatimah</creatorcontrib><description>This paper presents a comprehensive exploration of a probabilistic adaptation of the Eneström–Kakeya theorem, applied to random polynomials featuring various coefficient distributions. Unlike the deterministic rendition of the theorem, our study dispenses with the necessity of any specific coefficient order. Instead, we consider coefficients drawn from a spectrum of sets with diverse probability distributions, encompassing finite, countable, and uncountable sets. Furthermore, we provide a result concerning the probability of failure of Schur stability for a random polynomial with coefficients distributed independently and identically as standard normal variates. We also provide simulations to corroborate our results.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math11194061</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algebra ; Coefficients ; Distribution (Probability theory) ; Eneström–Kakeya theorem ; Normal distribution ; Polynomials ; random polynomials ; Random variables ; Schur stability ; Statistical analysis ; Theorems</subject><ispartof>Mathematics (Basel), 2023-10, Vol.11 (19), p.4061</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-2294ac44f5bf13475c599af5be54a10e8b91466f915266c47b7d01cead2e3bd83</citedby><cites>FETCH-LOGICAL-c406t-2294ac44f5bf13475c599af5be54a10e8b91466f915266c47b7d01cead2e3bd83</cites><orcidid>0000-0002-8873-8952 ; 0000-0002-4651-3210 ; 0000-0002-7565-2244 ; 0000-0003-1306-7688 ; 0009-0008-7858-2764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2876536246/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2876536246?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25735,27906,27907,36994,44572,74876</link.rule.ids></links><search><creatorcontrib>Sheikh, Sajad A.</creatorcontrib><creatorcontrib>Mir, Mohammad Ibrahim</creatorcontrib><creatorcontrib>Dar, Javid Gani</creatorcontrib><creatorcontrib>Almanjahie, Ibrahim M.</creatorcontrib><creatorcontrib>Alshahrani, Fatimah</creatorcontrib><title>A Probabilistic Version of Eneström–Kakeya Theorem for Certain Random Polynomials</title><title>Mathematics (Basel)</title><description>This paper presents a comprehensive exploration of a probabilistic adaptation of the Eneström–Kakeya theorem, applied to random polynomials featuring various coefficient distributions. Unlike the deterministic rendition of the theorem, our study dispenses with the necessity of any specific coefficient order. Instead, we consider coefficients drawn from a spectrum of sets with diverse probability distributions, encompassing finite, countable, and uncountable sets. Furthermore, we provide a result concerning the probability of failure of Schur stability for a random polynomial with coefficients distributed independently and identically as standard normal variates. We also provide simulations to corroborate our results.</description><subject>Algebra</subject><subject>Coefficients</subject><subject>Distribution (Probability theory)</subject><subject>Eneström–Kakeya theorem</subject><subject>Normal distribution</subject><subject>Polynomials</subject><subject>random polynomials</subject><subject>Random variables</subject><subject>Schur stability</subject><subject>Statistical analysis</subject><subject>Theorems</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtOAzEMhkcIJCpgxwEisaWQ1ySTZVWVh0ACocI28uTRpnQmJTMsuuMO3IULcBNOQkoRIl44duwvv-WiOCb4jDGFzxvo54QQxbEgO8WAUiqHMj_s_rvvF0ddt8D5KMIqrgbFdITuU6yhDsvQ9cGgJ5e6EFsUPZq0ruvT50fz9fZ-A89uDWg6dzG5BvmY0NilHkKLHqC1sUH3cbluYxNg2R0Wez47d_TrD4rHi8l0fDW8vbu8Ho9uhyaL7IeUKg6Gc1_WnjAuS1MqBTlyJQeCXVUrwoXwipRUCMNlLS0mxoGljtW2YgfF9ZZrIyz0KoUG0lpHCPonEdNMQ8pDLZ2uOLGKs9ITannNGEhbK0fzp4LgypeZdbJlrVJ8ec2D60V8TW2Wr2klRckE5SJXnW2rZpChofWxT2CyWdcEE1vnQ86PpKRYVVxssKfbBpNi1yXn_2QSrDd70__3xr4Bd7GLCA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Sheikh, Sajad A.</creator><creator>Mir, Mohammad Ibrahim</creator><creator>Dar, Javid Gani</creator><creator>Almanjahie, Ibrahim M.</creator><creator>Alshahrani, Fatimah</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8873-8952</orcidid><orcidid>https://orcid.org/0000-0002-4651-3210</orcidid><orcidid>https://orcid.org/0000-0002-7565-2244</orcidid><orcidid>https://orcid.org/0000-0003-1306-7688</orcidid><orcidid>https://orcid.org/0009-0008-7858-2764</orcidid></search><sort><creationdate>20231001</creationdate><title>A Probabilistic Version of Eneström–Kakeya Theorem for Certain Random Polynomials</title><author>Sheikh, Sajad A. ; Mir, Mohammad Ibrahim ; Dar, Javid Gani ; Almanjahie, Ibrahim M. ; Alshahrani, Fatimah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-2294ac44f5bf13475c599af5be54a10e8b91466f915266c47b7d01cead2e3bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Coefficients</topic><topic>Distribution (Probability theory)</topic><topic>Eneström–Kakeya theorem</topic><topic>Normal distribution</topic><topic>Polynomials</topic><topic>random polynomials</topic><topic>Random variables</topic><topic>Schur stability</topic><topic>Statistical analysis</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheikh, Sajad A.</creatorcontrib><creatorcontrib>Mir, Mohammad Ibrahim</creatorcontrib><creatorcontrib>Dar, Javid Gani</creatorcontrib><creatorcontrib>Almanjahie, Ibrahim M.</creatorcontrib><creatorcontrib>Alshahrani, Fatimah</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheikh, Sajad A.</au><au>Mir, Mohammad Ibrahim</au><au>Dar, Javid Gani</au><au>Almanjahie, Ibrahim M.</au><au>Alshahrani, Fatimah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Probabilistic Version of Eneström–Kakeya Theorem for Certain Random Polynomials</atitle><jtitle>Mathematics (Basel)</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>11</volume><issue>19</issue><spage>4061</spage><pages>4061-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>This paper presents a comprehensive exploration of a probabilistic adaptation of the Eneström–Kakeya theorem, applied to random polynomials featuring various coefficient distributions. Unlike the deterministic rendition of the theorem, our study dispenses with the necessity of any specific coefficient order. Instead, we consider coefficients drawn from a spectrum of sets with diverse probability distributions, encompassing finite, countable, and uncountable sets. Furthermore, we provide a result concerning the probability of failure of Schur stability for a random polynomial with coefficients distributed independently and identically as standard normal variates. We also provide simulations to corroborate our results.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math11194061</doi><orcidid>https://orcid.org/0000-0002-8873-8952</orcidid><orcidid>https://orcid.org/0000-0002-4651-3210</orcidid><orcidid>https://orcid.org/0000-0002-7565-2244</orcidid><orcidid>https://orcid.org/0000-0003-1306-7688</orcidid><orcidid>https://orcid.org/0009-0008-7858-2764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2023-10, Vol.11 (19), p.4061 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_841d9435f12d4b33a7db9e24756108f5 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algebra Coefficients Distribution (Probability theory) Eneström–Kakeya theorem Normal distribution Polynomials random polynomials Random variables Schur stability Statistical analysis Theorems |
title | A Probabilistic Version of Eneström–Kakeya Theorem for Certain Random Polynomials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Probabilistic%20Version%20of%20Enestr%C3%B6m%E2%80%93Kakeya%20Theorem%20for%20Certain%20Random%20Polynomials&rft.jtitle=Mathematics%20(Basel)&rft.au=Sheikh,%20Sajad%20A.&rft.date=2023-10-01&rft.volume=11&rft.issue=19&rft.spage=4061&rft.pages=4061-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math11194061&rft_dat=%3Cgale_doaj_%3EA772098465%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-2294ac44f5bf13475c599af5be54a10e8b91466f915266c47b7d01cead2e3bd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2876536246&rft_id=info:pmid/&rft_galeid=A772098465&rfr_iscdi=true |