Loading…

In vitro supplementation with the porcine plasma product, betaGRO®, stimulates activity of porcine fetal myoblasts and neonatal satellite cells in a divergent manner

Two separate experiments were conducted to evaluate the effect of betaGRO® supplementation on in vitro porcine fetal myoblasts (PFM) and porcine satellite cells (PSC) proliferation, fusion and myotube thickness. The PFM and PSC were isolated from the m. longissimus dorsi of day 60 of gestation fetus...

Full description

Saved in:
Bibliographic Details
Published in:Animal (Cambridge, England) England), 2018-09, Vol.12 (9), p.1912-1920
Main Authors: Vaughn, M. A., Phelps, K. J., Gonzalez, J. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two separate experiments were conducted to evaluate the effect of betaGRO® supplementation on in vitro porcine fetal myoblasts (PFM) and porcine satellite cells (PSC) proliferation, fusion and myotube thickness. The PFM and PSC were isolated from the m. longissimus dorsi of day 60 of gestation fetuses and piglets within 24 h of birth, respectively. Proliferation assays were conducted as 4×3 factorial arrangements with time of culture (24, 48, 72, 96 h) and media treatment (standard porcine media supplemented with 10% (vol/vol) fetal bovine serum (HS); HS without 10% fetal bovine serum (LS); and LS supplemented with 10 mg/ml betaGRO® (BG)) as main effects. Fusion and myotube growth assays were conducted as 2×2 factorial designs with serum concentration (HS or LS), and betaGRO® inclusion (0 or 10 mg/ml) as main effects. There was a treatment×time interaction and betaGRO®×serum interactions for proliferation, fusion and myotube thickness of PFM (P
ISSN:1751-7311
1751-732X
DOI:10.1017/S1751731117003329