Loading…

Native Protein Template Assisted Synthesis of Non-Native Metal-Sulfur Clusters

Metalloenzymes are the most proficient nature catalysts that are responsible for diverse biochemical transformations introducing excellent selectivity and performing at high rates, using intricate mutual relationships between metal ions and proteins. Inspired by nature, chemists started using natura...

Full description

Saved in:
Bibliographic Details
Published in:BioChem 2022-08, Vol.2 (3), p.182-197
Main Authors: Maiti, Biplab K., Moura, José J. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metalloenzymes are the most proficient nature catalysts that are responsible for diverse biochemical transformations introducing excellent selectivity and performing at high rates, using intricate mutual relationships between metal ions and proteins. Inspired by nature, chemists started using naturally occurring proteins as templates to harbor non-native metal catalysts for the sustainable synthesis of molecules for pharmaceutical, biotechnological and industrial purposes. Therefore, metalloenzymes are the relevant targets for the design of artificial biocatalysts. The search and development of new scaffolds capable of hosting metals with high levels of selectivity could significantly expand the scope of bio-catalysis. To meet this challenge, herein, three native scaffolds: [1Fe-4Cys] (rubredoxin), [3Fe-4S] (ferredoxin), and [S2MoS2CuS2MoS2]-ORP (orange protein) protein scaffolds are case studies describing templates for the synthesis of non-native monomeric to mixed metal–sulfur clusters, which mimic native Ni containing metalloenzymes including [Ni-Fe] Hydrogenase and [Ni-Fe] CO Dehydrogenase. The non-native metal-substituted metalloproteins are not only useful for catalysis but also as spectroscopic probes.
ISSN:2673-6411
2673-6411
DOI:10.3390/biochem2030013