Loading…
State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence
According to our position relative to that of the house, we also can judge our speed and that of the car, predict the location of the car, and determine whether we need to avoid the car. The disadvantage of the optical flow method is the large computational overhead. [...]it is difficult to find the...
Saved in:
Published in: | Applied sciences 2018-03, Vol.8 (3), p.379 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713 |
container_end_page | |
container_issue | 3 |
container_start_page | 379 |
container_title | Applied sciences |
container_volume | 8 |
creator | Jin, Xue-Bo Su, Ting-Li Kong, Jian-Lei Bai, Yu-Ting Miao, Bei-Bei Dou, Chao |
description | According to our position relative to that of the house, we also can judge our speed and that of the car, predict the location of the car, and determine whether we need to avoid the car. The disadvantage of the optical flow method is the large computational overhead. [...]it is difficult to find the correct optical flow mode when the robot is moving at a high speed. IMUs have become smaller, lower cost, and consume less power thanks to miniaturization technologies, such as micro-electro-mechanical systems or nano-electro-mechanical systems. Because the measurements of the IMUs have unknown drift, it is difficult to use the acceleration and orientation measurements, to obtain the current position of a pedestrian in an indoor navigation system [5]. [...]in the face of increasingly complex environments and movements, the most important difficulty lies in the fact that a sensor cannot obtain the accurate information in response to the complex environment of the outside world. [...]a method of modeling the measurement sensor should be developed. |
doi_str_mv | 10.3390/app8030379 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_846d2e77b1254e9f985f88e648a7a3d0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_846d2e77b1254e9f985f88e648a7a3d0</doaj_id><sourcerecordid>2314067458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713</originalsourceid><addsrcrecordid>eNpVkVtLAzEQhRdRsNS--AsCvgmruewmWd9KqbZQEbw8h-zupE3dbuomVfrgfzdtxcu8zDAcvjnDSZJzgq8YK_C1Xq8lZpiJ4ijpUSx4yjIijv_Mp8nA-yWOVRAmCe4ln09BB0idScMC0mEX0L0rbQNo2gZoGjuHtoIbNG512dh2jh5d6YJHwUXdO6CZfQU02ax061G5RWMf7EqHnXCPsWGLPmxYoAi2xlZWN__AZ8mJ0Y2HwXfvJy-34-fRJJ093E1Hw1laMU5CCkYLLoDFzzjNTZHXUkpe1NJoahiBOjdUc1ESXsi8IpSZgufAaUVJVdeCsH4yPXBrp5dq3UWT3VY5bdV-4bq50tFh1YCSGa8piAijeQaFiUQjJfBMaqFZjSPr4sBad-5tAz6opdt0bbSvKCMZ5iLLZVRdHlRV57zvwPxcJVjt0lK_abEvGMGG-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314067458</pqid></control><display><type>article</type><title>State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence</title><source>Publicly Available Content Database</source><creator>Jin, Xue-Bo ; Su, Ting-Li ; Kong, Jian-Lei ; Bai, Yu-Ting ; Miao, Bei-Bei ; Dou, Chao</creator><creatorcontrib>Jin, Xue-Bo ; Su, Ting-Li ; Kong, Jian-Lei ; Bai, Yu-Ting ; Miao, Bei-Bei ; Dou, Chao</creatorcontrib><description>According to our position relative to that of the house, we also can judge our speed and that of the car, predict the location of the car, and determine whether we need to avoid the car. The disadvantage of the optical flow method is the large computational overhead. [...]it is difficult to find the correct optical flow mode when the robot is moving at a high speed. IMUs have become smaller, lower cost, and consume less power thanks to miniaturization technologies, such as micro-electro-mechanical systems or nano-electro-mechanical systems. Because the measurements of the IMUs have unknown drift, it is difficult to use the acceleration and orientation measurements, to obtain the current position of a pedestrian in an indoor navigation system [5]. [...]in the face of increasingly complex environments and movements, the most important difficulty lies in the fact that a sensor cannot obtain the accurate information in response to the complex environment of the outside world. [...]a method of modeling the measurement sensor should be developed.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app8030379</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acceleration ; Accuracy ; adaptive model ; Artificial intelligence ; Computer applications ; Deep learning ; estimation ; Global positioning systems ; GPS ; Houses ; Indoor environments ; interacting multiple model ; International conferences ; Kalman filter ; Localization ; Mechanical systems ; Miniaturization ; mobile intelligence ; Navigation ; Navigation systems ; Neural networks ; Optical flow (image analysis) ; Position measurement ; Researchers ; Robots ; Sensors ; tracking ; tracking models ; Unmanned aerial vehicles ; World Wide Web</subject><ispartof>Applied sciences, 2018-03, Vol.8 (3), p.379</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713</citedby><cites>FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713</cites><orcidid>0000-0002-2230-0077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2314067458/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2314067458?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Jin, Xue-Bo</creatorcontrib><creatorcontrib>Su, Ting-Li</creatorcontrib><creatorcontrib>Kong, Jian-Lei</creatorcontrib><creatorcontrib>Bai, Yu-Ting</creatorcontrib><creatorcontrib>Miao, Bei-Bei</creatorcontrib><creatorcontrib>Dou, Chao</creatorcontrib><title>State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence</title><title>Applied sciences</title><description>According to our position relative to that of the house, we also can judge our speed and that of the car, predict the location of the car, and determine whether we need to avoid the car. The disadvantage of the optical flow method is the large computational overhead. [...]it is difficult to find the correct optical flow mode when the robot is moving at a high speed. IMUs have become smaller, lower cost, and consume less power thanks to miniaturization technologies, such as micro-electro-mechanical systems or nano-electro-mechanical systems. Because the measurements of the IMUs have unknown drift, it is difficult to use the acceleration and orientation measurements, to obtain the current position of a pedestrian in an indoor navigation system [5]. [...]in the face of increasingly complex environments and movements, the most important difficulty lies in the fact that a sensor cannot obtain the accurate information in response to the complex environment of the outside world. [...]a method of modeling the measurement sensor should be developed.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>adaptive model</subject><subject>Artificial intelligence</subject><subject>Computer applications</subject><subject>Deep learning</subject><subject>estimation</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Houses</subject><subject>Indoor environments</subject><subject>interacting multiple model</subject><subject>International conferences</subject><subject>Kalman filter</subject><subject>Localization</subject><subject>Mechanical systems</subject><subject>Miniaturization</subject><subject>mobile intelligence</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Neural networks</subject><subject>Optical flow (image analysis)</subject><subject>Position measurement</subject><subject>Researchers</subject><subject>Robots</subject><subject>Sensors</subject><subject>tracking</subject><subject>tracking models</subject><subject>Unmanned aerial vehicles</subject><subject>World Wide Web</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkVtLAzEQhRdRsNS--AsCvgmruewmWd9KqbZQEbw8h-zupE3dbuomVfrgfzdtxcu8zDAcvjnDSZJzgq8YK_C1Xq8lZpiJ4ijpUSx4yjIijv_Mp8nA-yWOVRAmCe4ln09BB0idScMC0mEX0L0rbQNo2gZoGjuHtoIbNG512dh2jh5d6YJHwUXdO6CZfQU02ax061G5RWMf7EqHnXCPsWGLPmxYoAi2xlZWN__AZ8mJ0Y2HwXfvJy-34-fRJJ093E1Hw1laMU5CCkYLLoDFzzjNTZHXUkpe1NJoahiBOjdUc1ESXsi8IpSZgufAaUVJVdeCsH4yPXBrp5dq3UWT3VY5bdV-4bq50tFh1YCSGa8piAijeQaFiUQjJfBMaqFZjSPr4sBad-5tAz6opdt0bbSvKCMZ5iLLZVRdHlRV57zvwPxcJVjt0lK_abEvGMGG-A</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Jin, Xue-Bo</creator><creator>Su, Ting-Li</creator><creator>Kong, Jian-Lei</creator><creator>Bai, Yu-Ting</creator><creator>Miao, Bei-Bei</creator><creator>Dou, Chao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2230-0077</orcidid></search><sort><creationdate>20180301</creationdate><title>State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence</title><author>Jin, Xue-Bo ; Su, Ting-Li ; Kong, Jian-Lei ; Bai, Yu-Ting ; Miao, Bei-Bei ; Dou, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>adaptive model</topic><topic>Artificial intelligence</topic><topic>Computer applications</topic><topic>Deep learning</topic><topic>estimation</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Houses</topic><topic>Indoor environments</topic><topic>interacting multiple model</topic><topic>International conferences</topic><topic>Kalman filter</topic><topic>Localization</topic><topic>Mechanical systems</topic><topic>Miniaturization</topic><topic>mobile intelligence</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Neural networks</topic><topic>Optical flow (image analysis)</topic><topic>Position measurement</topic><topic>Researchers</topic><topic>Robots</topic><topic>Sensors</topic><topic>tracking</topic><topic>tracking models</topic><topic>Unmanned aerial vehicles</topic><topic>World Wide Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xue-Bo</creatorcontrib><creatorcontrib>Su, Ting-Li</creatorcontrib><creatorcontrib>Kong, Jian-Lei</creatorcontrib><creatorcontrib>Bai, Yu-Ting</creatorcontrib><creatorcontrib>Miao, Bei-Bei</creatorcontrib><creatorcontrib>Dou, Chao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xue-Bo</au><au>Su, Ting-Li</au><au>Kong, Jian-Lei</au><au>Bai, Yu-Ting</au><au>Miao, Bei-Bei</au><au>Dou, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence</atitle><jtitle>Applied sciences</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>8</volume><issue>3</issue><spage>379</spage><pages>379-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>According to our position relative to that of the house, we also can judge our speed and that of the car, predict the location of the car, and determine whether we need to avoid the car. The disadvantage of the optical flow method is the large computational overhead. [...]it is difficult to find the correct optical flow mode when the robot is moving at a high speed. IMUs have become smaller, lower cost, and consume less power thanks to miniaturization technologies, such as micro-electro-mechanical systems or nano-electro-mechanical systems. Because the measurements of the IMUs have unknown drift, it is difficult to use the acceleration and orientation measurements, to obtain the current position of a pedestrian in an indoor navigation system [5]. [...]in the face of increasingly complex environments and movements, the most important difficulty lies in the fact that a sensor cannot obtain the accurate information in response to the complex environment of the outside world. [...]a method of modeling the measurement sensor should be developed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app8030379</doi><orcidid>https://orcid.org/0000-0002-2230-0077</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2018-03, Vol.8 (3), p.379 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_846d2e77b1254e9f985f88e648a7a3d0 |
source | Publicly Available Content Database |
subjects | Acceleration Accuracy adaptive model Artificial intelligence Computer applications Deep learning estimation Global positioning systems GPS Houses Indoor environments interacting multiple model International conferences Kalman filter Localization Mechanical systems Miniaturization mobile intelligence Navigation Navigation systems Neural networks Optical flow (image analysis) Position measurement Researchers Robots Sensors tracking tracking models Unmanned aerial vehicles World Wide Web |
title | State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-of-the-Art%20Mobile%20Intelligence:%20Enabling%20Robots%20to%20Move%20Like%20Humans%20by%20Estimating%20Mobility%20with%20Artificial%20Intelligence&rft.jtitle=Applied%20sciences&rft.au=Jin,%20Xue-Bo&rft.date=2018-03-01&rft.volume=8&rft.issue=3&rft.spage=379&rft.pages=379-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app8030379&rft_dat=%3Cproquest_doaj_%3E2314067458%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314067458&rft_id=info:pmid/&rfr_iscdi=true |