Loading…

State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence

According to our position relative to that of the house, we also can judge our speed and that of the car, predict the location of the car, and determine whether we need to avoid the car. The disadvantage of the optical flow method is the large computational overhead. [...]it is difficult to find the...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2018-03, Vol.8 (3), p.379
Main Authors: Jin, Xue-Bo, Su, Ting-Li, Kong, Jian-Lei, Bai, Yu-Ting, Miao, Bei-Bei, Dou, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713
cites cdi_FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713
container_end_page
container_issue 3
container_start_page 379
container_title Applied sciences
container_volume 8
creator Jin, Xue-Bo
Su, Ting-Li
Kong, Jian-Lei
Bai, Yu-Ting
Miao, Bei-Bei
Dou, Chao
description According to our position relative to that of the house, we also can judge our speed and that of the car, predict the location of the car, and determine whether we need to avoid the car. The disadvantage of the optical flow method is the large computational overhead. [...]it is difficult to find the correct optical flow mode when the robot is moving at a high speed. IMUs have become smaller, lower cost, and consume less power thanks to miniaturization technologies, such as micro-electro-mechanical systems or nano-electro-mechanical systems. Because the measurements of the IMUs have unknown drift, it is difficult to use the acceleration and orientation measurements, to obtain the current position of a pedestrian in an indoor navigation system [5]. [...]in the face of increasingly complex environments and movements, the most important difficulty lies in the fact that a sensor cannot obtain the accurate information in response to the complex environment of the outside world. [...]a method of modeling the measurement sensor should be developed.
doi_str_mv 10.3390/app8030379
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_846d2e77b1254e9f985f88e648a7a3d0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_846d2e77b1254e9f985f88e648a7a3d0</doaj_id><sourcerecordid>2314067458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713</originalsourceid><addsrcrecordid>eNpVkVtLAzEQhRdRsNS--AsCvgmruewmWd9KqbZQEbw8h-zupE3dbuomVfrgfzdtxcu8zDAcvjnDSZJzgq8YK_C1Xq8lZpiJ4ijpUSx4yjIijv_Mp8nA-yWOVRAmCe4ln09BB0idScMC0mEX0L0rbQNo2gZoGjuHtoIbNG512dh2jh5d6YJHwUXdO6CZfQU02ax061G5RWMf7EqHnXCPsWGLPmxYoAi2xlZWN__AZ8mJ0Y2HwXfvJy-34-fRJJ093E1Hw1laMU5CCkYLLoDFzzjNTZHXUkpe1NJoahiBOjdUc1ESXsi8IpSZgufAaUVJVdeCsH4yPXBrp5dq3UWT3VY5bdV-4bq50tFh1YCSGa8piAijeQaFiUQjJfBMaqFZjSPr4sBad-5tAz6opdt0bbSvKCMZ5iLLZVRdHlRV57zvwPxcJVjt0lK_abEvGMGG-A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314067458</pqid></control><display><type>article</type><title>State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence</title><source>Publicly Available Content Database</source><creator>Jin, Xue-Bo ; Su, Ting-Li ; Kong, Jian-Lei ; Bai, Yu-Ting ; Miao, Bei-Bei ; Dou, Chao</creator><creatorcontrib>Jin, Xue-Bo ; Su, Ting-Li ; Kong, Jian-Lei ; Bai, Yu-Ting ; Miao, Bei-Bei ; Dou, Chao</creatorcontrib><description>According to our position relative to that of the house, we also can judge our speed and that of the car, predict the location of the car, and determine whether we need to avoid the car. The disadvantage of the optical flow method is the large computational overhead. [...]it is difficult to find the correct optical flow mode when the robot is moving at a high speed. IMUs have become smaller, lower cost, and consume less power thanks to miniaturization technologies, such as micro-electro-mechanical systems or nano-electro-mechanical systems. Because the measurements of the IMUs have unknown drift, it is difficult to use the acceleration and orientation measurements, to obtain the current position of a pedestrian in an indoor navigation system [5]. [...]in the face of increasingly complex environments and movements, the most important difficulty lies in the fact that a sensor cannot obtain the accurate information in response to the complex environment of the outside world. [...]a method of modeling the measurement sensor should be developed.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app8030379</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acceleration ; Accuracy ; adaptive model ; Artificial intelligence ; Computer applications ; Deep learning ; estimation ; Global positioning systems ; GPS ; Houses ; Indoor environments ; interacting multiple model ; International conferences ; Kalman filter ; Localization ; Mechanical systems ; Miniaturization ; mobile intelligence ; Navigation ; Navigation systems ; Neural networks ; Optical flow (image analysis) ; Position measurement ; Researchers ; Robots ; Sensors ; tracking ; tracking models ; Unmanned aerial vehicles ; World Wide Web</subject><ispartof>Applied sciences, 2018-03, Vol.8 (3), p.379</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713</citedby><cites>FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713</cites><orcidid>0000-0002-2230-0077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2314067458/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2314067458?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Jin, Xue-Bo</creatorcontrib><creatorcontrib>Su, Ting-Li</creatorcontrib><creatorcontrib>Kong, Jian-Lei</creatorcontrib><creatorcontrib>Bai, Yu-Ting</creatorcontrib><creatorcontrib>Miao, Bei-Bei</creatorcontrib><creatorcontrib>Dou, Chao</creatorcontrib><title>State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence</title><title>Applied sciences</title><description>According to our position relative to that of the house, we also can judge our speed and that of the car, predict the location of the car, and determine whether we need to avoid the car. The disadvantage of the optical flow method is the large computational overhead. [...]it is difficult to find the correct optical flow mode when the robot is moving at a high speed. IMUs have become smaller, lower cost, and consume less power thanks to miniaturization technologies, such as micro-electro-mechanical systems or nano-electro-mechanical systems. Because the measurements of the IMUs have unknown drift, it is difficult to use the acceleration and orientation measurements, to obtain the current position of a pedestrian in an indoor navigation system [5]. [...]in the face of increasingly complex environments and movements, the most important difficulty lies in the fact that a sensor cannot obtain the accurate information in response to the complex environment of the outside world. [...]a method of modeling the measurement sensor should be developed.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>adaptive model</subject><subject>Artificial intelligence</subject><subject>Computer applications</subject><subject>Deep learning</subject><subject>estimation</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Houses</subject><subject>Indoor environments</subject><subject>interacting multiple model</subject><subject>International conferences</subject><subject>Kalman filter</subject><subject>Localization</subject><subject>Mechanical systems</subject><subject>Miniaturization</subject><subject>mobile intelligence</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Neural networks</subject><subject>Optical flow (image analysis)</subject><subject>Position measurement</subject><subject>Researchers</subject><subject>Robots</subject><subject>Sensors</subject><subject>tracking</subject><subject>tracking models</subject><subject>Unmanned aerial vehicles</subject><subject>World Wide Web</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkVtLAzEQhRdRsNS--AsCvgmruewmWd9KqbZQEbw8h-zupE3dbuomVfrgfzdtxcu8zDAcvjnDSZJzgq8YK_C1Xq8lZpiJ4ijpUSx4yjIijv_Mp8nA-yWOVRAmCe4ln09BB0idScMC0mEX0L0rbQNo2gZoGjuHtoIbNG512dh2jh5d6YJHwUXdO6CZfQU02ax061G5RWMf7EqHnXCPsWGLPmxYoAi2xlZWN__AZ8mJ0Y2HwXfvJy-34-fRJJ093E1Hw1laMU5CCkYLLoDFzzjNTZHXUkpe1NJoahiBOjdUc1ESXsi8IpSZgufAaUVJVdeCsH4yPXBrp5dq3UWT3VY5bdV-4bq50tFh1YCSGa8piAijeQaFiUQjJfBMaqFZjSPr4sBad-5tAz6opdt0bbSvKCMZ5iLLZVRdHlRV57zvwPxcJVjt0lK_abEvGMGG-A</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Jin, Xue-Bo</creator><creator>Su, Ting-Li</creator><creator>Kong, Jian-Lei</creator><creator>Bai, Yu-Ting</creator><creator>Miao, Bei-Bei</creator><creator>Dou, Chao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2230-0077</orcidid></search><sort><creationdate>20180301</creationdate><title>State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence</title><author>Jin, Xue-Bo ; Su, Ting-Li ; Kong, Jian-Lei ; Bai, Yu-Ting ; Miao, Bei-Bei ; Dou, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>adaptive model</topic><topic>Artificial intelligence</topic><topic>Computer applications</topic><topic>Deep learning</topic><topic>estimation</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Houses</topic><topic>Indoor environments</topic><topic>interacting multiple model</topic><topic>International conferences</topic><topic>Kalman filter</topic><topic>Localization</topic><topic>Mechanical systems</topic><topic>Miniaturization</topic><topic>mobile intelligence</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Neural networks</topic><topic>Optical flow (image analysis)</topic><topic>Position measurement</topic><topic>Researchers</topic><topic>Robots</topic><topic>Sensors</topic><topic>tracking</topic><topic>tracking models</topic><topic>Unmanned aerial vehicles</topic><topic>World Wide Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xue-Bo</creatorcontrib><creatorcontrib>Su, Ting-Li</creatorcontrib><creatorcontrib>Kong, Jian-Lei</creatorcontrib><creatorcontrib>Bai, Yu-Ting</creatorcontrib><creatorcontrib>Miao, Bei-Bei</creatorcontrib><creatorcontrib>Dou, Chao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xue-Bo</au><au>Su, Ting-Li</au><au>Kong, Jian-Lei</au><au>Bai, Yu-Ting</au><au>Miao, Bei-Bei</au><au>Dou, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence</atitle><jtitle>Applied sciences</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>8</volume><issue>3</issue><spage>379</spage><pages>379-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>According to our position relative to that of the house, we also can judge our speed and that of the car, predict the location of the car, and determine whether we need to avoid the car. The disadvantage of the optical flow method is the large computational overhead. [...]it is difficult to find the correct optical flow mode when the robot is moving at a high speed. IMUs have become smaller, lower cost, and consume less power thanks to miniaturization technologies, such as micro-electro-mechanical systems or nano-electro-mechanical systems. Because the measurements of the IMUs have unknown drift, it is difficult to use the acceleration and orientation measurements, to obtain the current position of a pedestrian in an indoor navigation system [5]. [...]in the face of increasingly complex environments and movements, the most important difficulty lies in the fact that a sensor cannot obtain the accurate information in response to the complex environment of the outside world. [...]a method of modeling the measurement sensor should be developed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app8030379</doi><orcidid>https://orcid.org/0000-0002-2230-0077</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2018-03, Vol.8 (3), p.379
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_846d2e77b1254e9f985f88e648a7a3d0
source Publicly Available Content Database
subjects Acceleration
Accuracy
adaptive model
Artificial intelligence
Computer applications
Deep learning
estimation
Global positioning systems
GPS
Houses
Indoor environments
interacting multiple model
International conferences
Kalman filter
Localization
Mechanical systems
Miniaturization
mobile intelligence
Navigation
Navigation systems
Neural networks
Optical flow (image analysis)
Position measurement
Researchers
Robots
Sensors
tracking
tracking models
Unmanned aerial vehicles
World Wide Web
title State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-of-the-Art%20Mobile%20Intelligence:%20Enabling%20Robots%20to%20Move%20Like%20Humans%20by%20Estimating%20Mobility%20with%20Artificial%20Intelligence&rft.jtitle=Applied%20sciences&rft.au=Jin,%20Xue-Bo&rft.date=2018-03-01&rft.volume=8&rft.issue=3&rft.spage=379&rft.pages=379-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app8030379&rft_dat=%3Cproquest_doaj_%3E2314067458%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-efa767e3379625f95d88869d8fa2f31ed5f2a67b16985c123f965e62c21cdd713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314067458&rft_id=info:pmid/&rfr_iscdi=true