Loading…

Experimental evaluation of the impact of pigment-based colored interlayers on the temperature of BIPV modules

While colored photovoltaics are gaining popularity in the market for building-integrated photovoltaics (BIPV), several specific properties are not accounted for in standard PV performance models. This work shows how relying on the coloration efficiency alone can lead to significant errors regarding...

Full description

Saved in:
Bibliographic Details
Published in:EPJ Photovoltaics 2023, Vol.14, p.34
Main Authors: Babin, Markus, Jóhannsson, Ingvar Haukur, Jakobsen, Michael Linde, Thorsteinsson, Sune
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While colored photovoltaics are gaining popularity in the market for building-integrated photovoltaics (BIPV), several specific properties are not accounted for in standard PV performance models. This work shows how relying on the coloration efficiency alone can lead to significant errors regarding module temperatures. By comparing measured temperature data from a test installation featuring BIPV façade elements in multiple colors, little correlation is found between total optical losses (reflection and absorption losses) and module temperature. Instead, better correlation is found with total reflectance. This is attributed to the light absorbed in the pigment-based colored layers contributing to module heating, whereas reflected light does not. This is especially relevant for colors with high lightness, such as gray or beige, for which reflection losses are dominating absorption losses. When modelling colored BIPV products, it is therefore recommended to only consider reflection losses for the irradiance contributing to module heating, while continuing to also include absorption losses for the effective irradiance used in electrical performance modelling.
ISSN:2105-0716
2105-0716
DOI:10.1051/epjpv/2023028