Loading…

Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome

Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral phenotype. Previou...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2022-02, Vol.27 (5), p.1489
Main Authors: Rodrigues, Matilde S, Ferreira, Samira G, Quiroz, César, Earley, Christopher J, García-Borreguero, Diego, Cunha, Rodrigo A, Ciruela, Francisco, Köfalvi, Attila, Ferré, Sergi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3
cites cdi_FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3
container_end_page
container_issue 5
container_start_page 1489
container_title Molecules (Basel, Switzerland)
container_volume 27
creator Rodrigues, Matilde S
Ferreira, Samira G
Quiroz, César
Earley, Christopher J
García-Borreguero, Diego
Cunha, Rodrigo A
Ciruela, Francisco
Köfalvi, Attila
Ferré, Sergi
description Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral phenotype. Previous studies with the BID-rodent model of RLS demonstrated increased sensitivity of cortical pyramidal cells to release glutamate from their striatal nerve terminals driving striatal circuits, a correlative finding of the cortical motor hyperexcitability of RLS patients. It was also found that BID in rodents leads to changes in the adenosinergic system, a downregulation of the inhibitory adenosine A receptors (A Rs) and upregulation of the excitatory adenosine A receptors (A Rs). It was then hypothesized, but not proven, that the BID-induced increased sensitivity of cortico-striatal glutamatergic terminals could be induced by a change in A R/A R stoichiometry in favor of A Rs. Here, we used a newly developed FACS-based synaptometric analysis to compare the relative abundance on A Rs and A Rs in cortico-striatal and thalamo-striatal glutamatergic terminals (labeled with vesicular glutamate transporters VGLUT1 and VGLUT2, respectively) of control and BID rats. It could be demonstrated that BID (determined by measuring transferrin receptor density in the brain) is associated with a selective decrease in the A R/A R ratio in VGLUT1 positive-striatal terminals.
doi_str_mv 10.3390/molecules27051489
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_84996bcbe2df4dbba35686e4de4c23b3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_84996bcbe2df4dbba35686e4de4c23b3</doaj_id><sourcerecordid>2637752341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3</originalsourceid><addsrcrecordid>eNplkstuEzEUhkcIREvhAdggS2zYBHyfGRZIJdwiRUJqytqyPWcSRzN2sD1I8yC8L05TqhZWts75_-9cdKrqJcFvGWvxuzEMYKcBEq2xILxpH1XnhFO8YJi3j-_9z6pnKe0xpoQT8bQ6Y4LKRrT4vPr9MWrn0SoGjz5B76wDb2e03Gm_hYTyDtAmB2d3LoyQ44xCjy478CE5D-gKLBxyiGgzmTwfiqGwliFmZ8Nik6PTWQ_oGuLovB7Se7QaD4OzOrvgE-qL8QpSLgMktIZtQpvZd7EUel496YseXty-F9WPL5-vl98W6-9fV8vL9cIK0eaF1KzvgBoCvTE9bjgv_XAragGyJazhgrakhDCVQjKDa9wTKm3dNazmFIBdVKsTtwt6rw7RjTrOKminbgIhbpU-DjOAanjbSmMN0K7nnTGaCdlI4F0pSJlhhfXhxDpMZoTOgs9RDw-gDzPe7dQ2_FJNS4jEvADe3AJi-DmVvajRJQvDoD2EKSkqWVOTRnBSpK__ke7DFI8rPqrqWlB2oyInlY0hpQj9XTMEq-MBqf8OqHhe3Z_izvH3YtgfNK3HbQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637752341</pqid></control><display><type>article</type><title>Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome</title><source>PubMed Central (Open Access)</source><source>ProQuest - Publicly Available Content Database</source><creator>Rodrigues, Matilde S ; Ferreira, Samira G ; Quiroz, César ; Earley, Christopher J ; García-Borreguero, Diego ; Cunha, Rodrigo A ; Ciruela, Francisco ; Köfalvi, Attila ; Ferré, Sergi</creator><creatorcontrib>Rodrigues, Matilde S ; Ferreira, Samira G ; Quiroz, César ; Earley, Christopher J ; García-Borreguero, Diego ; Cunha, Rodrigo A ; Ciruela, Francisco ; Köfalvi, Attila ; Ferré, Sergi</creatorcontrib><description>Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral phenotype. Previous studies with the BID-rodent model of RLS demonstrated increased sensitivity of cortical pyramidal cells to release glutamate from their striatal nerve terminals driving striatal circuits, a correlative finding of the cortical motor hyperexcitability of RLS patients. It was also found that BID in rodents leads to changes in the adenosinergic system, a downregulation of the inhibitory adenosine A receptors (A Rs) and upregulation of the excitatory adenosine A receptors (A Rs). It was then hypothesized, but not proven, that the BID-induced increased sensitivity of cortico-striatal glutamatergic terminals could be induced by a change in A R/A R stoichiometry in favor of A Rs. Here, we used a newly developed FACS-based synaptometric analysis to compare the relative abundance on A Rs and A Rs in cortico-striatal and thalamo-striatal glutamatergic terminals (labeled with vesicular glutamate transporters VGLUT1 and VGLUT2, respectively) of control and BID rats. It could be demonstrated that BID (determined by measuring transferrin receptor density in the brain) is associated with a selective decrease in the A R/A R ratio in VGLUT1 positive-striatal terminals.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules27051489</identifier><identifier>PMID: 35268590</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adenosine ; adenosine A1 receptor ; Adenosine A1 receptors ; adenosine A2A receptor ; Adenosine A2A receptors ; Animal models ; Animals ; Brain ; Brain - metabolism ; Brain - pathology ; brain iron deficiency ; Cerebral Cortex - metabolism ; Corpus Striatum - metabolism ; Corpus Striatum - pathology ; cortico-striatal terminals ; Disease Models, Animal ; Flow cytometry ; Genotype &amp; phenotype ; Glutamatergic transmission ; Glutamic Acid - metabolism ; Iron ; Iron Deficiencies ; Labeling ; Male ; Microscopy ; Neostriatum ; Nerve endings ; Nutrient deficiency ; Phenotypes ; Pyramidal cells ; Rats ; Receptor density ; Receptor, Adenosine A1 - metabolism ; Receptor, Adenosine A2A - metabolism ; Relative abundance ; Restless legs syndrome ; Restless Legs Syndrome - metabolism ; Rodents ; Sensitivity ; Stoichiometry ; striatum ; Transferrin ; Transferrins ; Vesicular Glutamate Transport Protein 1 - metabolism ; Vesicular Glutamate Transport Protein 2 - metabolism</subject><ispartof>Molecules (Basel, Switzerland), 2022-02, Vol.27 (5), p.1489</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3</citedby><cites>FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3</cites><orcidid>0000-0002-9616-8400 ; 0000-0001-6910-9707 ; 0000-0003-2550-6422 ; 0000-0002-1747-1779 ; 0000-0003-0832-3739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2637752341/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2637752341?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35268590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigues, Matilde S</creatorcontrib><creatorcontrib>Ferreira, Samira G</creatorcontrib><creatorcontrib>Quiroz, César</creatorcontrib><creatorcontrib>Earley, Christopher J</creatorcontrib><creatorcontrib>García-Borreguero, Diego</creatorcontrib><creatorcontrib>Cunha, Rodrigo A</creatorcontrib><creatorcontrib>Ciruela, Francisco</creatorcontrib><creatorcontrib>Köfalvi, Attila</creatorcontrib><creatorcontrib>Ferré, Sergi</creatorcontrib><title>Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral phenotype. Previous studies with the BID-rodent model of RLS demonstrated increased sensitivity of cortical pyramidal cells to release glutamate from their striatal nerve terminals driving striatal circuits, a correlative finding of the cortical motor hyperexcitability of RLS patients. It was also found that BID in rodents leads to changes in the adenosinergic system, a downregulation of the inhibitory adenosine A receptors (A Rs) and upregulation of the excitatory adenosine A receptors (A Rs). It was then hypothesized, but not proven, that the BID-induced increased sensitivity of cortico-striatal glutamatergic terminals could be induced by a change in A R/A R stoichiometry in favor of A Rs. Here, we used a newly developed FACS-based synaptometric analysis to compare the relative abundance on A Rs and A Rs in cortico-striatal and thalamo-striatal glutamatergic terminals (labeled with vesicular glutamate transporters VGLUT1 and VGLUT2, respectively) of control and BID rats. It could be demonstrated that BID (determined by measuring transferrin receptor density in the brain) is associated with a selective decrease in the A R/A R ratio in VGLUT1 positive-striatal terminals.</description><subject>Adenosine</subject><subject>adenosine A1 receptor</subject><subject>Adenosine A1 receptors</subject><subject>adenosine A2A receptor</subject><subject>Adenosine A2A receptors</subject><subject>Animal models</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>brain iron deficiency</subject><subject>Cerebral Cortex - metabolism</subject><subject>Corpus Striatum - metabolism</subject><subject>Corpus Striatum - pathology</subject><subject>cortico-striatal terminals</subject><subject>Disease Models, Animal</subject><subject>Flow cytometry</subject><subject>Genotype &amp; phenotype</subject><subject>Glutamatergic transmission</subject><subject>Glutamic Acid - metabolism</subject><subject>Iron</subject><subject>Iron Deficiencies</subject><subject>Labeling</subject><subject>Male</subject><subject>Microscopy</subject><subject>Neostriatum</subject><subject>Nerve endings</subject><subject>Nutrient deficiency</subject><subject>Phenotypes</subject><subject>Pyramidal cells</subject><subject>Rats</subject><subject>Receptor density</subject><subject>Receptor, Adenosine A1 - metabolism</subject><subject>Receptor, Adenosine A2A - metabolism</subject><subject>Relative abundance</subject><subject>Restless legs syndrome</subject><subject>Restless Legs Syndrome - metabolism</subject><subject>Rodents</subject><subject>Sensitivity</subject><subject>Stoichiometry</subject><subject>striatum</subject><subject>Transferrin</subject><subject>Transferrins</subject><subject>Vesicular Glutamate Transport Protein 1 - metabolism</subject><subject>Vesicular Glutamate Transport Protein 2 - metabolism</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkstuEzEUhkcIREvhAdggS2zYBHyfGRZIJdwiRUJqytqyPWcSRzN2sD1I8yC8L05TqhZWts75_-9cdKrqJcFvGWvxuzEMYKcBEq2xILxpH1XnhFO8YJi3j-_9z6pnKe0xpoQT8bQ6Y4LKRrT4vPr9MWrn0SoGjz5B76wDb2e03Gm_hYTyDtAmB2d3LoyQ44xCjy478CE5D-gKLBxyiGgzmTwfiqGwliFmZ8Nik6PTWQ_oGuLovB7Se7QaD4OzOrvgE-qL8QpSLgMktIZtQpvZd7EUel496YseXty-F9WPL5-vl98W6-9fV8vL9cIK0eaF1KzvgBoCvTE9bjgv_XAragGyJazhgrakhDCVQjKDa9wTKm3dNazmFIBdVKsTtwt6rw7RjTrOKminbgIhbpU-DjOAanjbSmMN0K7nnTGaCdlI4F0pSJlhhfXhxDpMZoTOgs9RDw-gDzPe7dQ2_FJNS4jEvADe3AJi-DmVvajRJQvDoD2EKSkqWVOTRnBSpK__ke7DFI8rPqrqWlB2oyInlY0hpQj9XTMEq-MBqf8OqHhe3Z_izvH3YtgfNK3HbQ</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Rodrigues, Matilde S</creator><creator>Ferreira, Samira G</creator><creator>Quiroz, César</creator><creator>Earley, Christopher J</creator><creator>García-Borreguero, Diego</creator><creator>Cunha, Rodrigo A</creator><creator>Ciruela, Francisco</creator><creator>Köfalvi, Attila</creator><creator>Ferré, Sergi</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9616-8400</orcidid><orcidid>https://orcid.org/0000-0001-6910-9707</orcidid><orcidid>https://orcid.org/0000-0003-2550-6422</orcidid><orcidid>https://orcid.org/0000-0002-1747-1779</orcidid><orcidid>https://orcid.org/0000-0003-0832-3739</orcidid></search><sort><creationdate>20220223</creationdate><title>Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome</title><author>Rodrigues, Matilde S ; Ferreira, Samira G ; Quiroz, César ; Earley, Christopher J ; García-Borreguero, Diego ; Cunha, Rodrigo A ; Ciruela, Francisco ; Köfalvi, Attila ; Ferré, Sergi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine</topic><topic>adenosine A1 receptor</topic><topic>Adenosine A1 receptors</topic><topic>adenosine A2A receptor</topic><topic>Adenosine A2A receptors</topic><topic>Animal models</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>brain iron deficiency</topic><topic>Cerebral Cortex - metabolism</topic><topic>Corpus Striatum - metabolism</topic><topic>Corpus Striatum - pathology</topic><topic>cortico-striatal terminals</topic><topic>Disease Models, Animal</topic><topic>Flow cytometry</topic><topic>Genotype &amp; phenotype</topic><topic>Glutamatergic transmission</topic><topic>Glutamic Acid - metabolism</topic><topic>Iron</topic><topic>Iron Deficiencies</topic><topic>Labeling</topic><topic>Male</topic><topic>Microscopy</topic><topic>Neostriatum</topic><topic>Nerve endings</topic><topic>Nutrient deficiency</topic><topic>Phenotypes</topic><topic>Pyramidal cells</topic><topic>Rats</topic><topic>Receptor density</topic><topic>Receptor, Adenosine A1 - metabolism</topic><topic>Receptor, Adenosine A2A - metabolism</topic><topic>Relative abundance</topic><topic>Restless legs syndrome</topic><topic>Restless Legs Syndrome - metabolism</topic><topic>Rodents</topic><topic>Sensitivity</topic><topic>Stoichiometry</topic><topic>striatum</topic><topic>Transferrin</topic><topic>Transferrins</topic><topic>Vesicular Glutamate Transport Protein 1 - metabolism</topic><topic>Vesicular Glutamate Transport Protein 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Matilde S</creatorcontrib><creatorcontrib>Ferreira, Samira G</creatorcontrib><creatorcontrib>Quiroz, César</creatorcontrib><creatorcontrib>Earley, Christopher J</creatorcontrib><creatorcontrib>García-Borreguero, Diego</creatorcontrib><creatorcontrib>Cunha, Rodrigo A</creatorcontrib><creatorcontrib>Ciruela, Francisco</creatorcontrib><creatorcontrib>Köfalvi, Attila</creatorcontrib><creatorcontrib>Ferré, Sergi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Matilde S</au><au>Ferreira, Samira G</au><au>Quiroz, César</au><au>Earley, Christopher J</au><au>García-Borreguero, Diego</au><au>Cunha, Rodrigo A</au><au>Ciruela, Francisco</au><au>Köfalvi, Attila</au><au>Ferré, Sergi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2022-02-23</date><risdate>2022</risdate><volume>27</volume><issue>5</issue><spage>1489</spage><pages>1489-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral phenotype. Previous studies with the BID-rodent model of RLS demonstrated increased sensitivity of cortical pyramidal cells to release glutamate from their striatal nerve terminals driving striatal circuits, a correlative finding of the cortical motor hyperexcitability of RLS patients. It was also found that BID in rodents leads to changes in the adenosinergic system, a downregulation of the inhibitory adenosine A receptors (A Rs) and upregulation of the excitatory adenosine A receptors (A Rs). It was then hypothesized, but not proven, that the BID-induced increased sensitivity of cortico-striatal glutamatergic terminals could be induced by a change in A R/A R stoichiometry in favor of A Rs. Here, we used a newly developed FACS-based synaptometric analysis to compare the relative abundance on A Rs and A Rs in cortico-striatal and thalamo-striatal glutamatergic terminals (labeled with vesicular glutamate transporters VGLUT1 and VGLUT2, respectively) of control and BID rats. It could be demonstrated that BID (determined by measuring transferrin receptor density in the brain) is associated with a selective decrease in the A R/A R ratio in VGLUT1 positive-striatal terminals.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35268590</pmid><doi>10.3390/molecules27051489</doi><orcidid>https://orcid.org/0000-0002-9616-8400</orcidid><orcidid>https://orcid.org/0000-0001-6910-9707</orcidid><orcidid>https://orcid.org/0000-0003-2550-6422</orcidid><orcidid>https://orcid.org/0000-0002-1747-1779</orcidid><orcidid>https://orcid.org/0000-0003-0832-3739</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2022-02, Vol.27 (5), p.1489
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_84996bcbe2df4dbba35686e4de4c23b3
source PubMed Central (Open Access); ProQuest - Publicly Available Content Database
subjects Adenosine
adenosine A1 receptor
Adenosine A1 receptors
adenosine A2A receptor
Adenosine A2A receptors
Animal models
Animals
Brain
Brain - metabolism
Brain - pathology
brain iron deficiency
Cerebral Cortex - metabolism
Corpus Striatum - metabolism
Corpus Striatum - pathology
cortico-striatal terminals
Disease Models, Animal
Flow cytometry
Genotype & phenotype
Glutamatergic transmission
Glutamic Acid - metabolism
Iron
Iron Deficiencies
Labeling
Male
Microscopy
Neostriatum
Nerve endings
Nutrient deficiency
Phenotypes
Pyramidal cells
Rats
Receptor density
Receptor, Adenosine A1 - metabolism
Receptor, Adenosine A2A - metabolism
Relative abundance
Restless legs syndrome
Restless Legs Syndrome - metabolism
Rodents
Sensitivity
Stoichiometry
striatum
Transferrin
Transferrins
Vesicular Glutamate Transport Protein 1 - metabolism
Vesicular Glutamate Transport Protein 2 - metabolism
title Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20Iron%20Deficiency%20Changes%20the%20Stoichiometry%20of%20Adenosine%20Receptor%20Subtypes%20in%20Cortico-Striatal%20Terminals:%20Implications%20for%20Restless%20Legs%20Syndrome&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Rodrigues,%20Matilde%20S&rft.date=2022-02-23&rft.volume=27&rft.issue=5&rft.spage=1489&rft.pages=1489-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules27051489&rft_dat=%3Cproquest_doaj_%3E2637752341%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637752341&rft_id=info:pmid/35268590&rfr_iscdi=true