Loading…
Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome
Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral phenotype. Previou...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2022-02, Vol.27 (5), p.1489 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3 |
container_end_page | |
container_issue | 5 |
container_start_page | 1489 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 27 |
creator | Rodrigues, Matilde S Ferreira, Samira G Quiroz, César Earley, Christopher J García-Borreguero, Diego Cunha, Rodrigo A Ciruela, Francisco Köfalvi, Attila Ferré, Sergi |
description | Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral phenotype. Previous studies with the BID-rodent model of RLS demonstrated increased sensitivity of cortical pyramidal cells to release glutamate from their striatal nerve terminals driving striatal circuits, a correlative finding of the cortical motor hyperexcitability of RLS patients. It was also found that BID in rodents leads to changes in the adenosinergic system, a downregulation of the inhibitory adenosine A
receptors (A
Rs) and upregulation of the excitatory adenosine A
receptors (A
Rs). It was then hypothesized, but not proven, that the BID-induced increased sensitivity of cortico-striatal glutamatergic terminals could be induced by a change in A
R/A
R stoichiometry in favor of A
Rs. Here, we used a newly developed FACS-based synaptometric analysis to compare the relative abundance on A
Rs and A
Rs in cortico-striatal and thalamo-striatal glutamatergic terminals (labeled with vesicular glutamate transporters VGLUT1 and VGLUT2, respectively) of control and BID rats. It could be demonstrated that BID (determined by measuring transferrin receptor density in the brain) is associated with a selective decrease in the A
R/A
R ratio in VGLUT1 positive-striatal terminals. |
doi_str_mv | 10.3390/molecules27051489 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_84996bcbe2df4dbba35686e4de4c23b3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_84996bcbe2df4dbba35686e4de4c23b3</doaj_id><sourcerecordid>2637752341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3</originalsourceid><addsrcrecordid>eNplkstuEzEUhkcIREvhAdggS2zYBHyfGRZIJdwiRUJqytqyPWcSRzN2sD1I8yC8L05TqhZWts75_-9cdKrqJcFvGWvxuzEMYKcBEq2xILxpH1XnhFO8YJi3j-_9z6pnKe0xpoQT8bQ6Y4LKRrT4vPr9MWrn0SoGjz5B76wDb2e03Gm_hYTyDtAmB2d3LoyQ44xCjy478CE5D-gKLBxyiGgzmTwfiqGwliFmZ8Nik6PTWQ_oGuLovB7Se7QaD4OzOrvgE-qL8QpSLgMktIZtQpvZd7EUel496YseXty-F9WPL5-vl98W6-9fV8vL9cIK0eaF1KzvgBoCvTE9bjgv_XAragGyJazhgrakhDCVQjKDa9wTKm3dNazmFIBdVKsTtwt6rw7RjTrOKminbgIhbpU-DjOAanjbSmMN0K7nnTGaCdlI4F0pSJlhhfXhxDpMZoTOgs9RDw-gDzPe7dQ2_FJNS4jEvADe3AJi-DmVvajRJQvDoD2EKSkqWVOTRnBSpK__ke7DFI8rPqrqWlB2oyInlY0hpQj9XTMEq-MBqf8OqHhe3Z_izvH3YtgfNK3HbQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637752341</pqid></control><display><type>article</type><title>Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome</title><source>PubMed Central (Open Access)</source><source>ProQuest - Publicly Available Content Database</source><creator>Rodrigues, Matilde S ; Ferreira, Samira G ; Quiroz, César ; Earley, Christopher J ; García-Borreguero, Diego ; Cunha, Rodrigo A ; Ciruela, Francisco ; Köfalvi, Attila ; Ferré, Sergi</creator><creatorcontrib>Rodrigues, Matilde S ; Ferreira, Samira G ; Quiroz, César ; Earley, Christopher J ; García-Borreguero, Diego ; Cunha, Rodrigo A ; Ciruela, Francisco ; Köfalvi, Attila ; Ferré, Sergi</creatorcontrib><description>Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral phenotype. Previous studies with the BID-rodent model of RLS demonstrated increased sensitivity of cortical pyramidal cells to release glutamate from their striatal nerve terminals driving striatal circuits, a correlative finding of the cortical motor hyperexcitability of RLS patients. It was also found that BID in rodents leads to changes in the adenosinergic system, a downregulation of the inhibitory adenosine A
receptors (A
Rs) and upregulation of the excitatory adenosine A
receptors (A
Rs). It was then hypothesized, but not proven, that the BID-induced increased sensitivity of cortico-striatal glutamatergic terminals could be induced by a change in A
R/A
R stoichiometry in favor of A
Rs. Here, we used a newly developed FACS-based synaptometric analysis to compare the relative abundance on A
Rs and A
Rs in cortico-striatal and thalamo-striatal glutamatergic terminals (labeled with vesicular glutamate transporters VGLUT1 and VGLUT2, respectively) of control and BID rats. It could be demonstrated that BID (determined by measuring transferrin receptor density in the brain) is associated with a selective decrease in the A
R/A
R ratio in VGLUT1 positive-striatal terminals.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules27051489</identifier><identifier>PMID: 35268590</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adenosine ; adenosine A1 receptor ; Adenosine A1 receptors ; adenosine A2A receptor ; Adenosine A2A receptors ; Animal models ; Animals ; Brain ; Brain - metabolism ; Brain - pathology ; brain iron deficiency ; Cerebral Cortex - metabolism ; Corpus Striatum - metabolism ; Corpus Striatum - pathology ; cortico-striatal terminals ; Disease Models, Animal ; Flow cytometry ; Genotype & phenotype ; Glutamatergic transmission ; Glutamic Acid - metabolism ; Iron ; Iron Deficiencies ; Labeling ; Male ; Microscopy ; Neostriatum ; Nerve endings ; Nutrient deficiency ; Phenotypes ; Pyramidal cells ; Rats ; Receptor density ; Receptor, Adenosine A1 - metabolism ; Receptor, Adenosine A2A - metabolism ; Relative abundance ; Restless legs syndrome ; Restless Legs Syndrome - metabolism ; Rodents ; Sensitivity ; Stoichiometry ; striatum ; Transferrin ; Transferrins ; Vesicular Glutamate Transport Protein 1 - metabolism ; Vesicular Glutamate Transport Protein 2 - metabolism</subject><ispartof>Molecules (Basel, Switzerland), 2022-02, Vol.27 (5), p.1489</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3</citedby><cites>FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3</cites><orcidid>0000-0002-9616-8400 ; 0000-0001-6910-9707 ; 0000-0003-2550-6422 ; 0000-0002-1747-1779 ; 0000-0003-0832-3739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2637752341/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2637752341?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35268590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigues, Matilde S</creatorcontrib><creatorcontrib>Ferreira, Samira G</creatorcontrib><creatorcontrib>Quiroz, César</creatorcontrib><creatorcontrib>Earley, Christopher J</creatorcontrib><creatorcontrib>García-Borreguero, Diego</creatorcontrib><creatorcontrib>Cunha, Rodrigo A</creatorcontrib><creatorcontrib>Ciruela, Francisco</creatorcontrib><creatorcontrib>Köfalvi, Attila</creatorcontrib><creatorcontrib>Ferré, Sergi</creatorcontrib><title>Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral phenotype. Previous studies with the BID-rodent model of RLS demonstrated increased sensitivity of cortical pyramidal cells to release glutamate from their striatal nerve terminals driving striatal circuits, a correlative finding of the cortical motor hyperexcitability of RLS patients. It was also found that BID in rodents leads to changes in the adenosinergic system, a downregulation of the inhibitory adenosine A
receptors (A
Rs) and upregulation of the excitatory adenosine A
receptors (A
Rs). It was then hypothesized, but not proven, that the BID-induced increased sensitivity of cortico-striatal glutamatergic terminals could be induced by a change in A
R/A
R stoichiometry in favor of A
Rs. Here, we used a newly developed FACS-based synaptometric analysis to compare the relative abundance on A
Rs and A
Rs in cortico-striatal and thalamo-striatal glutamatergic terminals (labeled with vesicular glutamate transporters VGLUT1 and VGLUT2, respectively) of control and BID rats. It could be demonstrated that BID (determined by measuring transferrin receptor density in the brain) is associated with a selective decrease in the A
R/A
R ratio in VGLUT1 positive-striatal terminals.</description><subject>Adenosine</subject><subject>adenosine A1 receptor</subject><subject>Adenosine A1 receptors</subject><subject>adenosine A2A receptor</subject><subject>Adenosine A2A receptors</subject><subject>Animal models</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>brain iron deficiency</subject><subject>Cerebral Cortex - metabolism</subject><subject>Corpus Striatum - metabolism</subject><subject>Corpus Striatum - pathology</subject><subject>cortico-striatal terminals</subject><subject>Disease Models, Animal</subject><subject>Flow cytometry</subject><subject>Genotype & phenotype</subject><subject>Glutamatergic transmission</subject><subject>Glutamic Acid - metabolism</subject><subject>Iron</subject><subject>Iron Deficiencies</subject><subject>Labeling</subject><subject>Male</subject><subject>Microscopy</subject><subject>Neostriatum</subject><subject>Nerve endings</subject><subject>Nutrient deficiency</subject><subject>Phenotypes</subject><subject>Pyramidal cells</subject><subject>Rats</subject><subject>Receptor density</subject><subject>Receptor, Adenosine A1 - metabolism</subject><subject>Receptor, Adenosine A2A - metabolism</subject><subject>Relative abundance</subject><subject>Restless legs syndrome</subject><subject>Restless Legs Syndrome - metabolism</subject><subject>Rodents</subject><subject>Sensitivity</subject><subject>Stoichiometry</subject><subject>striatum</subject><subject>Transferrin</subject><subject>Transferrins</subject><subject>Vesicular Glutamate Transport Protein 1 - metabolism</subject><subject>Vesicular Glutamate Transport Protein 2 - metabolism</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkstuEzEUhkcIREvhAdggS2zYBHyfGRZIJdwiRUJqytqyPWcSRzN2sD1I8yC8L05TqhZWts75_-9cdKrqJcFvGWvxuzEMYKcBEq2xILxpH1XnhFO8YJi3j-_9z6pnKe0xpoQT8bQ6Y4LKRrT4vPr9MWrn0SoGjz5B76wDb2e03Gm_hYTyDtAmB2d3LoyQ44xCjy478CE5D-gKLBxyiGgzmTwfiqGwliFmZ8Nik6PTWQ_oGuLovB7Se7QaD4OzOrvgE-qL8QpSLgMktIZtQpvZd7EUel496YseXty-F9WPL5-vl98W6-9fV8vL9cIK0eaF1KzvgBoCvTE9bjgv_XAragGyJazhgrakhDCVQjKDa9wTKm3dNazmFIBdVKsTtwt6rw7RjTrOKminbgIhbpU-DjOAanjbSmMN0K7nnTGaCdlI4F0pSJlhhfXhxDpMZoTOgs9RDw-gDzPe7dQ2_FJNS4jEvADe3AJi-DmVvajRJQvDoD2EKSkqWVOTRnBSpK__ke7DFI8rPqrqWlB2oyInlY0hpQj9XTMEq-MBqf8OqHhe3Z_izvH3YtgfNK3HbQ</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Rodrigues, Matilde S</creator><creator>Ferreira, Samira G</creator><creator>Quiroz, César</creator><creator>Earley, Christopher J</creator><creator>García-Borreguero, Diego</creator><creator>Cunha, Rodrigo A</creator><creator>Ciruela, Francisco</creator><creator>Köfalvi, Attila</creator><creator>Ferré, Sergi</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9616-8400</orcidid><orcidid>https://orcid.org/0000-0001-6910-9707</orcidid><orcidid>https://orcid.org/0000-0003-2550-6422</orcidid><orcidid>https://orcid.org/0000-0002-1747-1779</orcidid><orcidid>https://orcid.org/0000-0003-0832-3739</orcidid></search><sort><creationdate>20220223</creationdate><title>Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome</title><author>Rodrigues, Matilde S ; Ferreira, Samira G ; Quiroz, César ; Earley, Christopher J ; García-Borreguero, Diego ; Cunha, Rodrigo A ; Ciruela, Francisco ; Köfalvi, Attila ; Ferré, Sergi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine</topic><topic>adenosine A1 receptor</topic><topic>Adenosine A1 receptors</topic><topic>adenosine A2A receptor</topic><topic>Adenosine A2A receptors</topic><topic>Animal models</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>brain iron deficiency</topic><topic>Cerebral Cortex - metabolism</topic><topic>Corpus Striatum - metabolism</topic><topic>Corpus Striatum - pathology</topic><topic>cortico-striatal terminals</topic><topic>Disease Models, Animal</topic><topic>Flow cytometry</topic><topic>Genotype & phenotype</topic><topic>Glutamatergic transmission</topic><topic>Glutamic Acid - metabolism</topic><topic>Iron</topic><topic>Iron Deficiencies</topic><topic>Labeling</topic><topic>Male</topic><topic>Microscopy</topic><topic>Neostriatum</topic><topic>Nerve endings</topic><topic>Nutrient deficiency</topic><topic>Phenotypes</topic><topic>Pyramidal cells</topic><topic>Rats</topic><topic>Receptor density</topic><topic>Receptor, Adenosine A1 - metabolism</topic><topic>Receptor, Adenosine A2A - metabolism</topic><topic>Relative abundance</topic><topic>Restless legs syndrome</topic><topic>Restless Legs Syndrome - metabolism</topic><topic>Rodents</topic><topic>Sensitivity</topic><topic>Stoichiometry</topic><topic>striatum</topic><topic>Transferrin</topic><topic>Transferrins</topic><topic>Vesicular Glutamate Transport Protein 1 - metabolism</topic><topic>Vesicular Glutamate Transport Protein 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Matilde S</creatorcontrib><creatorcontrib>Ferreira, Samira G</creatorcontrib><creatorcontrib>Quiroz, César</creatorcontrib><creatorcontrib>Earley, Christopher J</creatorcontrib><creatorcontrib>García-Borreguero, Diego</creatorcontrib><creatorcontrib>Cunha, Rodrigo A</creatorcontrib><creatorcontrib>Ciruela, Francisco</creatorcontrib><creatorcontrib>Köfalvi, Attila</creatorcontrib><creatorcontrib>Ferré, Sergi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Matilde S</au><au>Ferreira, Samira G</au><au>Quiroz, César</au><au>Earley, Christopher J</au><au>García-Borreguero, Diego</au><au>Cunha, Rodrigo A</au><au>Ciruela, Francisco</au><au>Köfalvi, Attila</au><au>Ferré, Sergi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2022-02-23</date><risdate>2022</risdate><volume>27</volume><issue>5</issue><spage>1489</spage><pages>1489-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral phenotype. Previous studies with the BID-rodent model of RLS demonstrated increased sensitivity of cortical pyramidal cells to release glutamate from their striatal nerve terminals driving striatal circuits, a correlative finding of the cortical motor hyperexcitability of RLS patients. It was also found that BID in rodents leads to changes in the adenosinergic system, a downregulation of the inhibitory adenosine A
receptors (A
Rs) and upregulation of the excitatory adenosine A
receptors (A
Rs). It was then hypothesized, but not proven, that the BID-induced increased sensitivity of cortico-striatal glutamatergic terminals could be induced by a change in A
R/A
R stoichiometry in favor of A
Rs. Here, we used a newly developed FACS-based synaptometric analysis to compare the relative abundance on A
Rs and A
Rs in cortico-striatal and thalamo-striatal glutamatergic terminals (labeled with vesicular glutamate transporters VGLUT1 and VGLUT2, respectively) of control and BID rats. It could be demonstrated that BID (determined by measuring transferrin receptor density in the brain) is associated with a selective decrease in the A
R/A
R ratio in VGLUT1 positive-striatal terminals.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35268590</pmid><doi>10.3390/molecules27051489</doi><orcidid>https://orcid.org/0000-0002-9616-8400</orcidid><orcidid>https://orcid.org/0000-0001-6910-9707</orcidid><orcidid>https://orcid.org/0000-0003-2550-6422</orcidid><orcidid>https://orcid.org/0000-0002-1747-1779</orcidid><orcidid>https://orcid.org/0000-0003-0832-3739</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2022-02, Vol.27 (5), p.1489 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_84996bcbe2df4dbba35686e4de4c23b3 |
source | PubMed Central (Open Access); ProQuest - Publicly Available Content Database |
subjects | Adenosine adenosine A1 receptor Adenosine A1 receptors adenosine A2A receptor Adenosine A2A receptors Animal models Animals Brain Brain - metabolism Brain - pathology brain iron deficiency Cerebral Cortex - metabolism Corpus Striatum - metabolism Corpus Striatum - pathology cortico-striatal terminals Disease Models, Animal Flow cytometry Genotype & phenotype Glutamatergic transmission Glutamic Acid - metabolism Iron Iron Deficiencies Labeling Male Microscopy Neostriatum Nerve endings Nutrient deficiency Phenotypes Pyramidal cells Rats Receptor density Receptor, Adenosine A1 - metabolism Receptor, Adenosine A2A - metabolism Relative abundance Restless legs syndrome Restless Legs Syndrome - metabolism Rodents Sensitivity Stoichiometry striatum Transferrin Transferrins Vesicular Glutamate Transport Protein 1 - metabolism Vesicular Glutamate Transport Protein 2 - metabolism |
title | Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20Iron%20Deficiency%20Changes%20the%20Stoichiometry%20of%20Adenosine%20Receptor%20Subtypes%20in%20Cortico-Striatal%20Terminals:%20Implications%20for%20Restless%20Legs%20Syndrome&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Rodrigues,%20Matilde%20S&rft.date=2022-02-23&rft.volume=27&rft.issue=5&rft.spage=1489&rft.pages=1489-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules27051489&rft_dat=%3Cproquest_doaj_%3E2637752341%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-6a3fde2b1efbbf0844ece4c575e6913845291ece026563b070f126c7d83742ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637752341&rft_id=info:pmid/35268590&rfr_iscdi=true |