Loading…
Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method
This paper investigates the synchronization of general complex dynamical networks (CDNs) with both internal delay and transmission delay. Event-triggered mechanism is applied for the feedback controllers, in which the triggered function is formed as a nonincreasing function. Both continuous feedback...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2019, Vol.2019 (2019), p.1-17 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the synchronization of general complex dynamical networks (CDNs) with both internal delay and transmission delay. Event-triggered mechanism is applied for the feedback controllers, in which the triggered function is formed as a nonincreasing function. Both continuous feedback and sampled-data feedback methods are studied. According to Lyapunov stability theorem and generalized Halanay’s inequality, quasi-synchronization criteria are derived at first. The synchronization error is bounded with some parameters of the triggered function. Then, the completed synchronization can be guaranteed as a special case. Finally, coupled neural networks as numerical simulation examples are given to verify the theoretical results. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2019/7348572 |