Loading…

Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method

This paper investigates the synchronization of general complex dynamical networks (CDNs) with both internal delay and transmission delay. Event-triggered mechanism is applied for the feedback controllers, in which the triggered function is formed as a nonincreasing function. Both continuous feedback...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2019, Vol.2019 (2019), p.1-17
Main Authors: Wang, Fei, Yang, Yongqing, Zhao-Wen, Zheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-a54ac17cb476e9f0839beed72acf78cb0243187639e6cf36b986e282708c8cac3
cites cdi_FETCH-LOGICAL-c465t-a54ac17cb476e9f0839beed72acf78cb0243187639e6cf36b986e282708c8cac3
container_end_page 17
container_issue 2019
container_start_page 1
container_title Complexity (New York, N.Y.)
container_volume 2019
creator Wang, Fei
Yang, Yongqing
Zhao-Wen, Zheng
description This paper investigates the synchronization of general complex dynamical networks (CDNs) with both internal delay and transmission delay. Event-triggered mechanism is applied for the feedback controllers, in which the triggered function is formed as a nonincreasing function. Both continuous feedback and sampled-data feedback methods are studied. According to Lyapunov stability theorem and generalized Halanay’s inequality, quasi-synchronization criteria are derived at first. The synchronization error is bounded with some parameters of the triggered function. Then, the completed synchronization can be guaranteed as a special case. Finally, coupled neural networks as numerical simulation examples are given to verify the theoretical results.
doi_str_mv 10.1155/2019/7348572
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_84ac0cb2dfba470bad1f2a687d7c4518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615313282</galeid><doaj_id>oai_doaj_org_article_84ac0cb2dfba470bad1f2a687d7c4518</doaj_id><sourcerecordid>A615313282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-a54ac17cb476e9f0839beed72acf78cb0243187639e6cf36b986e282708c8cac3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEEqVw44wscaRp_ZHYDrdq29JKBQ4s52hijzdesvbiZFmWG_853qaCIwdrrNFv3nuaKYrXjJ4zVtcXnLLmQolK14o_KU4YbZqS1lw-Pf6VLLnS6nnxYhzXlNJGCnVS_P5yCKZPMfhfMPkYSHRkETfbAX-Sq0OAjTcwkE847WP6NpK9n3pye-iSt2TpN0iucIAD2QWLiVz_wDCVy-RXK0xos06YUhzek2WP-SUc-zhYcrML5sHqI059tC-LZw6GEV891tPi6831cnFb3n_-cLe4vC9NJeuphLoCw5TpKiWxcVSLpkO0ioNxSpuO8kowraRoUBonZNdoiVxzRbXRBow4Le5mXRth3W6T30A6tBF8-9CIadVCmrwZsNXZipqOW9dBpWgHljkOUiurTFUznbXezlrbFL_vcJzaddylkOO3XOQtZ1cuMnU-UyvIoj64OCXIUcBiXmsM6HzuX0pWCyZy1DxwNg-YFMcxofsbk9H2eOH2eOH28cIZfzfjvQ8W9v5_9JuZxsygg390NpdKiz9X27CH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327827023</pqid></control><display><type>article</type><title>Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method</title><source>Wiley Open Access</source><creator>Wang, Fei ; Yang, Yongqing ; Zhao-Wen, Zheng</creator><contributor>Campos-Canton, Eric ; Eric Campos-Canton</contributor><creatorcontrib>Wang, Fei ; Yang, Yongqing ; Zhao-Wen, Zheng ; Campos-Canton, Eric ; Eric Campos-Canton</creatorcontrib><description>This paper investigates the synchronization of general complex dynamical networks (CDNs) with both internal delay and transmission delay. Event-triggered mechanism is applied for the feedback controllers, in which the triggered function is formed as a nonincreasing function. Both continuous feedback and sampled-data feedback methods are studied. According to Lyapunov stability theorem and generalized Halanay’s inequality, quasi-synchronization criteria are derived at first. The synchronization error is bounded with some parameters of the triggered function. Then, the completed synchronization can be guaranteed as a special case. Finally, coupled neural networks as numerical simulation examples are given to verify the theoretical results.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2019/7348572</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Analysis ; Computer simulation ; Continuity (mathematics) ; Event triggered control ; Feedback control ; Image processing ; Methods ; Neural networks ; Sampling methods ; Synchronism ; Time lag</subject><ispartof>Complexity (New York, N.Y.), 2019, Vol.2019 (2019), p.1-17</ispartof><rights>Copyright © 2019 Fei Wang et al.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2019 Fei Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-a54ac17cb476e9f0839beed72acf78cb0243187639e6cf36b986e282708c8cac3</citedby><cites>FETCH-LOGICAL-c465t-a54ac17cb476e9f0839beed72acf78cb0243187639e6cf36b986e282708c8cac3</cites><orcidid>0000-0003-1976-2243 ; 0000-0002-2952-4911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Campos-Canton, Eric</contributor><contributor>Eric Campos-Canton</contributor><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Yang, Yongqing</creatorcontrib><creatorcontrib>Zhao-Wen, Zheng</creatorcontrib><title>Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method</title><title>Complexity (New York, N.Y.)</title><description>This paper investigates the synchronization of general complex dynamical networks (CDNs) with both internal delay and transmission delay. Event-triggered mechanism is applied for the feedback controllers, in which the triggered function is formed as a nonincreasing function. Both continuous feedback and sampled-data feedback methods are studied. According to Lyapunov stability theorem and generalized Halanay’s inequality, quasi-synchronization criteria are derived at first. The synchronization error is bounded with some parameters of the triggered function. Then, the completed synchronization can be guaranteed as a special case. Finally, coupled neural networks as numerical simulation examples are given to verify the theoretical results.</description><subject>Analysis</subject><subject>Computer simulation</subject><subject>Continuity (mathematics)</subject><subject>Event triggered control</subject><subject>Feedback control</subject><subject>Image processing</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Sampling methods</subject><subject>Synchronism</subject><subject>Time lag</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkc1v1DAQxSMEEqVw44wscaRp_ZHYDrdq29JKBQ4s52hijzdesvbiZFmWG_853qaCIwdrrNFv3nuaKYrXjJ4zVtcXnLLmQolK14o_KU4YbZqS1lw-Pf6VLLnS6nnxYhzXlNJGCnVS_P5yCKZPMfhfMPkYSHRkETfbAX-Sq0OAjTcwkE847WP6NpK9n3pye-iSt2TpN0iucIAD2QWLiVz_wDCVy-RXK0xos06YUhzek2WP-SUc-zhYcrML5sHqI059tC-LZw6GEV891tPi6831cnFb3n_-cLe4vC9NJeuphLoCw5TpKiWxcVSLpkO0ioNxSpuO8kowraRoUBonZNdoiVxzRbXRBow4Le5mXRth3W6T30A6tBF8-9CIadVCmrwZsNXZipqOW9dBpWgHljkOUiurTFUznbXezlrbFL_vcJzaddylkOO3XOQtZ1cuMnU-UyvIoj64OCXIUcBiXmsM6HzuX0pWCyZy1DxwNg-YFMcxofsbk9H2eOH2eOH28cIZfzfjvQ8W9v5_9JuZxsygg390NpdKiz9X27CH</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wang, Fei</creator><creator>Yang, Yongqing</creator><creator>Zhao-Wen, Zheng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1976-2243</orcidid><orcidid>https://orcid.org/0000-0002-2952-4911</orcidid></search><sort><creationdate>2019</creationdate><title>Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method</title><author>Wang, Fei ; Yang, Yongqing ; Zhao-Wen, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-a54ac17cb476e9f0839beed72acf78cb0243187639e6cf36b986e282708c8cac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Computer simulation</topic><topic>Continuity (mathematics)</topic><topic>Event triggered control</topic><topic>Feedback control</topic><topic>Image processing</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Sampling methods</topic><topic>Synchronism</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Yang, Yongqing</creatorcontrib><creatorcontrib>Zhao-Wen, Zheng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fei</au><au>Yang, Yongqing</au><au>Zhao-Wen, Zheng</au><au>Campos-Canton, Eric</au><au>Eric Campos-Canton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>This paper investigates the synchronization of general complex dynamical networks (CDNs) with both internal delay and transmission delay. Event-triggered mechanism is applied for the feedback controllers, in which the triggered function is formed as a nonincreasing function. Both continuous feedback and sampled-data feedback methods are studied. According to Lyapunov stability theorem and generalized Halanay’s inequality, quasi-synchronization criteria are derived at first. The synchronization error is bounded with some parameters of the triggered function. Then, the completed synchronization can be guaranteed as a special case. Finally, coupled neural networks as numerical simulation examples are given to verify the theoretical results.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/7348572</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1976-2243</orcidid><orcidid>https://orcid.org/0000-0002-2952-4911</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2019, Vol.2019 (2019), p.1-17
issn 1076-2787
1099-0526
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_84ac0cb2dfba470bad1f2a687d7c4518
source Wiley Open Access
subjects Analysis
Computer simulation
Continuity (mathematics)
Event triggered control
Feedback control
Image processing
Methods
Neural networks
Sampling methods
Synchronism
Time lag
title Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20of%20Complex%20Dynamical%20Networks%20with%20Hybrid%20Time%20Delay%20under%20Event-Triggered%20Control:%20The%20Threshold%20Function%20Method&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Wang,%20Fei&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2019/7348572&rft_dat=%3Cgale_doaj_%3EA615313282%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-a54ac17cb476e9f0839beed72acf78cb0243187639e6cf36b986e282708c8cac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2327827023&rft_id=info:pmid/&rft_galeid=A615313282&rfr_iscdi=true